データ・アナリティクス入門

ひらめき!挑戦の軌跡

問題解決の狙いは? 問題の所在を明らかにするためには、セグメンテーションや条件分けが重要です。まずは層別分解に取り組み、プロセスのどこに弱点があるかを見極めることが求められます。こうすることで、解決策が散漫にならず、問題の本質にフォーカスできます。 仮説はどう洗い出す? 仮説の洗い出しは容易ではなく、思いついたことをそのまま書き連ねても網羅性が得られにくいという課題があります。そこで、まずは核となるアイデアを抽出し、それを一般化したうえで再び具体的な形に落とし込む方法が有効です。さらに、対となるカテゴリも設定することで、フレームワークを活用した仮説の構築が可能になります。 データ活用はどう進む? また、「データドリブン経営」の推進に向けては、必要な検討やデータ収集、分析、結果の共有が事業改善の鍵となります。基礎的な経営結果データを効率的に可視化し、顧客タッチ数などの経営結果を動かすドライバデータを補足することが大切です。これにより、どのような意思決定を行うか、またそれに必要なデータが何かを明確にすることが可能になります。 売上分析のポイントは? さらに、売上分析環境の構築にも注力する必要があります。たとえば、PowerBIを活用すれば、各メンバーが見たい切り口でデータを分析できる環境を整備できます。具体的には、商談数、顧客タッチ数、提案数、商談期間などのデータを取得し、可視化することで、より精度の高い意思決定を支える基盤が構築されます。

クリティカルシンキング入門

物事の本質を見抜く力を養う学びの旅

イシューをどう捉える? 物事の本質【イシュー】を正確に捉えることの重要性を学びました。 まず、イシューを正確に捉えることができないと、誤った提案をしてしまうリスクがあることを理解しました。そのため、イシューを特定する方法として「問いから始める」「問いを残す」「問いを共有する」というアプローチを学びました。 学びを実践するには? ここまでの学びの総決算として、WEEK1からWEEK4までの内容を実践しました。分解・分析を駆使して例題を解いていく中で、以下の点を意識しました。 資料作成時には「誰に何を伝えたいのか」を常に意識し、文面でも視覚でも効果的に伝えることを心がけました。 議論の進行をどう工夫する? ディスカッションでは、話が逸れやすいため、会話形式でも常にイシューを意識して取り組むようにしました。 実務上では、チャットアプリなどを用いたやり取りの中でも、イシューから逸れることなく、主語述語を意識して対応することに留意しました。 また、ディスカッション形式のやり取りの際には、必ず議事録を取り、文字起こしをすることで重要な情報を収集し、クリティカルに問題を見つけることを実践しました。 正確な提案をするために さらに、イシューの特定から着手することの重要性を認識しました。解決すべき課題を明確にすることで、適正な提案が可能となり、そのプロセスでは必ず自分一人で判断せず、同僚や上司にも報告・共有しながら進めていくことが大切だと学びました。

マーケティング入門

対話で創る本物の体験

体験の差別化は? 「体験を考える」というテーマを通じ、ただ優れた商品を提供するだけでなく、その商品を通して得られる独自の体験が差別化につながるということを再認識しました。具体的には、個々の商品に飛び抜けたものがなくても、全体で見ると顧客が大満足しているという事例から、唯一無二の体験を提供できることの重要性を感じました。 一人だけでは? また、総合演習では、顧客視点で考える難しさを痛感しました。一人で考えを広げるには限界があるため、チームでの意見交換やヒアリング、アンケート、さらに顧客の行動観察など、さまざまな情報収集が必要だと実感しました。 顧客の本音は? 今後は、クライアントの心理を的確に捉え、常に顧客の立場に立って何が求められているのかを考えながら、対話や観察を行っていきたいと思います。私たちの商品を単に売るのではなく、顧客にとって「必要なもの」と感じてもらえるよう、デザインやネーミングにもこだわっていく所存です。 価格競争を避ける? さらに、無駄な価格競争を回避するため、市場分析のフレームワークを活用し、ターゲットを明確に絞り込んで自社の強みを存分に発揮できる商品作りに取り組みたいと感じました。 顧客体験の検証は? 訓練項目としては、まず顧客がどんな体験を望んでいるのかを考えること、次に売れない商品がどのような体験につながるのかを検証すること、そして、全体を俯瞰して良い体験を生み出す方法を模索することが挙げられます。

データ・アナリティクス入門

まずは基本!仮説で切り拓く学び

仮説はどのように考える? 仮説を考える際には、複数の仮説を立てることと、それぞれの仮説に網羅性を持たせることが重要です。また、反論を排除するためにも必要なデータを集め、仮説同士を比較検証できるようにすることを忘れてはいけません。 仮説定義はどうなってる? ビジネスの現場における仮説とは、ある論点に対する仮の答えを示すものです。仮説は、目的に応じて「結論の仮説」と「問題解決の仮説」に大別され、時間軸によって仮説の内容が変化します。 戦略はどう変化してる? マーケティングにおいては、プロモーションの戦略がIT関連の技術発展によって大きく変動する現状を踏まえ、トレンドを正確に抑えることが重要です。同時に、顧客満足度を非常に高いレベルに引き上げることでブランド価値を高めることが求められます。 実施前に何を検証すべき? 実際、分析の段階で仮説を立てずに作業してしまうことが多いと感じました。そのため、より網羅的に情報を確認するためにも、クリティカルシンキングを意識することが有効だと実感しています。これまでフレームワークの活用に対して懐疑的な面もありましたが、まずは基本に立ち返ることが大切だと感じました。 新施策の仮説検証は? 新しい施策を進める際には、4Cの視点を取り入れて仮説を立て、その仮説に基づいて必要なデータを収集することが有効です。データ収集の際は、自己のバイアスに捉われることなく、網羅的な情報収集を心がけるよう努めています。

データ・アナリティクス入門

比較が拓く新たな自己発見

比較ってどう進める? データ分析の根本は比較にあります。分析を行う際には、目的に応じた条件を揃えた比較対象を設定することが大切です。目的が明確であれば、適切な比較対象の選定が可能となり、分析の精度も向上します。 直感の表現は? また、直感的な感覚を自分の言葉で言語化することも重要です。「なんとなく」という漠然とした感覚を具体的に説明できるようにすることで、分析結果に説得力が生まれます。 定性定量はどう? 定量・定性の両面のデータを活用し、定量データの尺度の違いや特徴を把握することも必要です。さらに、分析の目的に合わせた可視化―例えばパーセンテージ表示やグラフ化―を行うことで、結果をより理解しやすく提示することが可能となります。 分析手順は何? データの加工や分析のプロセスでは、まず目的の確認と仮説の立案を行い、その後に結論へと導く一連の手順が求められます。この流れをしっかりと実行することで、効果的な分析と説得力のある結論が導かれます。 活用場面で何をすべき? 具体的な活用場面としては、営業やチームから依頼された市場データの提供、他社への施策提案、自社商品の価格検討などが挙げられます。これらの場面では、まず目的や期日などのゴールを明確に確認し、必要な条件を的確にヒアリングすることから始め、比較対象の設定、データの収集・加工・分析を実施します。最後に、分析の目的に沿った可視化手法を用いて、結論を提供することが求められます。

データ・アナリティクス入門

未来の問題解決力を養うナノ単科の魅力

問題解決の4ステップとは? 問題解決の4ステップについて確認しました。これらのステップは、問題の明確化、問題箇所の特定、原因の分析、そして解決策の立案です。問題が発生した際には、このフレームワークに従って課題の本質と原因を十分に把握し、それを踏まえた解決策を検討することが重要です。ビジネスではスピード感が求められることが多いですが、原因分析を急いでしまうと誤った解決策に至る可能性があるため、注意が必要です。 仮説設定のポイントは? また、仮説を考える際のポイントには、複数の仮説を立てることや、仮説同士の網羅性を持たせることがあります。決めうちせずに、異なる切り口で仮説を立てることが大切です。仮説は他の可能性を排除した先にあるため、データによる裏付けも重要です。特に社会課題を扱う際には、原因の仮説が「分かりやすい」ものに走りがちですが、常に複数の可能性を視野に入れてデータを検討することが必要です。 フレームワークをどう活用するか? 提案やブレストの際には、今回のフレームワークを取り入れたいと考えています。また、チーム内で問題解決の4ステップを共有し、データの取得方法を数字だけでなく、アンケートや口頭での情報収集など選択肢を広げて検討することも重要です。 仮説設定が重要な理由は? 特にデータ分析では「仮説設定」が最も重要であり、クリエイティブが求められる分野だと感じています。今後、この点を重点的に取り組みたいと思います。

クリティカルシンキング入門

質の高い問いで未来を拓く

本質の問いは? 講座全体の振り返りを通じて、学んだ内容を整理する大切さを実感しました。特に、本質的な課題解決へとつながる質の高い問いを立てる力を身に着けたいと強く感じています。そのため、社会情勢や組織が置かれている立場の理解、情報収集、そして教養を高めることなど、自分の思考基盤を強化し、想像力を働かせることが必要であると考えています。今後も講座で学んだ知識を意識的に活用していきたいと思います。 学びはどう深める? また、知識の定着を図るために、インプットした内容を実践で使いアウトプットし、他者からのフィードバックを受けた上で振り返りを行うサイクルを継続していきたいと思います。この循環をしっかりと回すことで、学びをより深めることができると感じています。 事業計画はどう進む? 来年度の具体的な事業計画の策定にあたっては、これまでの事業実績と効果の検証をもとにデータ収集を行います。まずは、核心となる「問い」を設定し、データの分析を通じて、ピラミッドストラクチャーを活用した具体的な計画を立てる予定です。この過程では、思考プロセスを言語化しておくことも重視しています。 承認資料の工夫は? さらに、策定した事業計画を内部で承認してもらうために、「目的が明確であるか」「読み手の立場に立っているか」「内容がしっかりしているか」「読みたく、理解したくなる工夫がされているか」といった視点から、スライドや説明資料の作成に努めていきます。

データ・アナリティクス入門

データ分析で競争力を引き出す方法

データ分析の本質とは? データ分析における本質は「比較」にあると言われています。この過程では、分析したい要素以外の条件を揃えることが重要です。適切な比較対象を選定し、分析の目的に沿った比較を行うことが求められます。 分析の目的設定はなぜ重要? まず、分析を始める際には、目的を明確にすることが必要です。そして、仮説を立て、それに基づいて優先順位を設定します。データの収集、加工、発見を経て、最終的には効果的な意思決定につなげていくのです。 成果を再現するには? 具体的な例としては、Aによる効果を分析する場面があります。この場合、Aが「ある場合」と「ない場合」を比較することが重要であり、分析はまさにこの比較によって成り立っています。特に営業職においては、成果が出ている活動の再現性を高めることが、組織の実績向上へとつながる可能性を秘めています。実績としては、販売実績やシェアが分かりやすいですが、行動としても活動日数や活動時間、活動製品内訳など、さまざまなデータが存在します。 比較を成功させるためには? 競合他社や都道府県別、営業社員別での比較を行う際には、まず分析の目的を明確にすることが肝要です。マネジメント業務では、売れる仕組みや自社製品の選定理由などを分析し、再現性の高いアクションプランの策定を推進しています。比較対象を選ぶ際には、目的に沿っているか、条件が均一かを確認し、分析を始める前によく見直すことが重要です。

クリティカルシンキング入門

仮説で解く数字のパズル

数字分解のヒントは? 与えられた数字をそのまま分析するのではなく、一工夫加えることで、そこから新たに導出できる数値や傾向に気づくことができました。数字を分解する過程で、単に機械的に区切る方法だけでなく、仮説に基づいた分解を試みると、初期段階で見えた傾向とさらに詳細に分解した際の傾向に違いが出ることを実感しました。 ミッション立案はどう? プロジェクトの初期段階では、全体のミッションを自ら定義し、タスクを洗い出す際にMECEを意識した分解を行うことが非常に重要であると再認識しました。特に、層別分解、変数分解、プロセス分解の3つの分解方法を念頭に置き、問題・課題の解決においても「どこに問題があるのか」「根本原因は何か」「どのように解決していくのか」をWhere、Why、Howの視点から論理的に整理することが有効だと感じました。 情報収集の工夫は? また、数字の分解に関しては、立場やアプローチによって分解できる数字とそうでない数字があるという点にも納得できました。特に、顧客情報や個人情報の取り扱いが厳しくなっている現状では、必要な情報を収集するために、仮説を立てた上で本当に分析に必要な情報を厳選し、十分な手続きを経て入手する必要があると考えています。一方で、実際にデータを集めてみて初めて明らかになる傾向もあるため、収集段階で何を取り入れるべきか、または除外すべきかを判断するのは難しい部分があり、今後の課題として捉えています。

戦略思考入門

学びの視点を広げる環境分析の力

目標達成の秘訣は? 目標を効率的に達成するためには何をすべきなのか、この問いへの答えを導くにはどのような流れで考えていくべきかを、今回の講義で学んだように思います。まず、今起きている事象の本質を見極めることが必要であり、そのためにはKSFを特定することが求められます。 視野拡大のコツは? 広い視点や高い視座で情報を収集し整理することで、全体像を把握することが重要です。これにより、大局を捉え、視野を広げて考えることが可能になります。ただし、自分の観点だけに頼ると見落としや偏りが生じてしまいます。そのため、フレームワークが非常に有用なツールとして役立ちます。フレームワークは単に埋めるだけではなく、各要素の整合性が取れていることが大切です。 環境変化の見極めは? 今回学んだ環境分析は、自分の業務において製品や技術の進化の方向性を見出したり、組織施策の考案に活用できると考えています。特に、自分が見えていない外部環境の変化が業界や製品に大きな影響を与える可能性についての話が印象に残りました。このような状況は、自業務でも起こり得ると考えており、外部環境分析に取り組むことの重要性を感じています。 実践で理解深める? 自業務における製品や技術、組織を対象に、フレームワークを活用して環境分析を進めていきたいと考えています。フレームワークの使用方法を理解するだけではなく、実践を通じて理解を深めることが必要だと感じています。

クリティカルシンキング入門

問いから始める課題解決の秘訣

正しい問いは何? 問いの立て方が変われば考える方向性も変わることを学びました。本質を捉えた問いを立てることが課題解決につながりますが、目先の課題に捉われてしまうと、その問題は解決されないまま繰り返される恐れがあります。正しい問いを立てるためには、データを活用して分解や加工を行い、イシューを特定することが重要です。私は日々、数字や情報を意識的に分解し、イシューを特定できるよう心がけていきたいと思います。 どう集客の課題? 企画営業においてもこのアプローチは常に活用できると感じています。集客に関する企画を立てる際にも、根本的な課題が何かを意識することで、適切な打ち手がより明確になると思っています。たとえば、集客が難しい場合、年齢層や性別などの複数の切り口から情報を収集し、イシューを特定したうえで打ち手を考えることで、より的確な提案が可能になると感じました。 問はどう共有する? イシューを特定するためには、どんな仕事においてもまず「問いは何か」を意識し、その問いを常に意識し続けること、そして組織内で共有することを徹底していきたいと思います。また、業務以外でも問いを立てる習慣を身につけ、イシュー特定に慣れていきたいです。イシューを特定できなければ効果的な打ち手にはつながらず、結果として課題解決にならず生産性も向上しないと感じています。ですから、イシューを特定することを第一の目標として、日々行動していきたいと思います。

データ・アナリティクス入門

数値が導く学びの冒険

数字はどう見える? まず、数字の見方について考えると、仮説を立てた上でデータを収集し、その後の分析で仮説の検証を行うという流れが基本だと感じました。AIを使って情報を収集する場合でも、自分なりの考えを持ち、AIから得られた情報と自分の意見を照らし合わせることが大切です。もしも自分の予想と結果が異なった場合、その違いがどこから生じたのかを考えることで、新たな学びのヒントが得られると実感しています。 代表値はどう見る? 次に、データの見方としては、代表値に注目しました。単純平均、加重平均、幾何平均、中央値など、データの性質や目的に応じて使い分けることが必要です。また、散らばりを示す指標としては標準偏差があり、これらの数値をグラフ化することで、直感的に状況を把握できる点も魅力的だと思いました。 業務の数値活用は? 普段の業務では、商品の売上や原価、コストダウンの検討などで、いろいろな平均値を算出することが新たな発見につながるのではないかと感じています。そして、その結果を他者に説明する際に、グラフを活用することで、理解を深め、合意形成をスムーズに進めることができると確信しています。 AIで何を発見? 日常の業務の中で、実際に数値をAIに入力して計算やグラフ化を試みることで、これまで気づかなかった事実や見逃していた視点を発見できるのではないかという期待があります。来週には、何かの案件で試してみるつもりです。
AIコーチング導線バナー

「本 × 収集」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right