データ・アナリティクス入門

仮説から挑む数字の物語

仮説はどこから来る? 分析の基本は、まずさまざまなデータを比較することにあります。細かなデータやグラフを確認する前に、自分なりの仮説を立てることが大切だと感じました。 3つの軸は何が違う? ここでは「プロセス」「視点」「アプローチ」という3つの軸が重要です。プロセスでは、目的を明確にし、仮説を立て、データを収集して、その仮説を分析により検証します。視点については、インパクト、ギャップ、トレンド、ばらつき、パターンなどに着目します。そしてアプローチとして、グラフや数字、数式を活用する方法が挙げられます。 可視化で何が分かる? 比較のための可視化には、数字に集約する方法、目で見て把握できるようグラフ化する方法、さらには数式にまとめる方法があり、状況に応じて適切な手法を選ぶことが効果的です。 代表値はどう見る? また、データを見やすくするためには「代表値」と「分布」を確認することがポイントです。代表値には単純平均、加重平均、幾何平均、中央値などがあり、ばらつきを把握するには標準偏差が有用です。特に、95%のデータが含まれるという2SDルールは、分析の信頼性を判断する際に役立ちます。 ノーム値は意味ある? クライアントのノーム値を算出して、予算シュミレーションに活用する手法も魅力的です。さらに、業界ごとにどの枠が効果的か比較検証することで、より適切なアプローチを模索することが可能だと思います。 実数値で検証できる? 実際のデータを利用してノーム値を算出する試みは、非常に価値があると感じます。社内にある関連データの算出方法や分析手法を参考にしながら、実数値での検証を進めることで、より実践的な知見が得られるでしょう。

クリティカルシンキング入門

自分を問い直す学びの旅

本質はどう捉える? 物事を深く考える習慣が大切だと感じました。表面的な情報に惑わされず、「本質は何なのか?」と常に問いかける姿勢や、偏らない多角的な視点を持つことが重要です。柔軟なアプローチで物事に接することで、これまで気づかなかった発見に出会える可能性があります。また、感情に流されすぎると判断が困難になるため、冷静さを保つことも大切です。こうした過程を経ることで、質問する力や自信が育まれ、相乗効果が生まれると実感しています。正解にたどり着くプロセスを大切にすることこそが、クリティカルシンキングであると改めて感じました。 ITで何を感じる? 私はIT業界に従事しており、これらの考え方は特に問題解決やトラブル対応の場面で役立っています。エラーが発生した際は、まず「その本質は何か?」を追求し、要件定義や仕様書作成の際には、顧客の要望を正確に把握することに努めています。プロジェクトの意思決定では、複数の選択肢から最適な判断を導き出す際や、コードレビューでロジックの意図を確認する際にも、クリティカルシンキングが大いに活かされると感じています。さらに、リスク評価やセキュリティ対策など、さまざまな場面でこのアプローチが有用であると実感しています。 目標設定はどうする? まず明確な目標を設定し、どの業務や課題に適用するかを決めます。次に情報収集を行い、得られた情報が正しいかどうかを吟味します。その上で、疑問を持ち、批判的に検証する習慣を身につけることが大切です。会話の際には複数の視点を意識し、問題を小さな単位に分解して考えるよう努めています。感情と事実を分け、冷静に判断することで、継続的なスキル向上と努力を重ね、確実に成果を積み重ねていきたいと考えています。

データ・アナリティクス入門

ロジックツリーで分析力がアップしたWEEK2の成果

Whatの重要性とは? 問題解決のステップにおける「What」の重要性として、「あるべき姿と現状を埋めるギャップ」を意識することが挙げられます。ここでも、正しい状態(ありたい姿)と現状の「比較」が必要であることを学びました。 ロジックツリーの活用は? 問題の明確化・特定の段階で活用できるフレームワークとして、層別分解と変数分解があります。特に変数分解の観点でMECEを考えることは、要素の抜け漏れが少なくなる可能性が大いに期待できると感じました。 また、ロジックツリーのコツ・留意点として、「感度の良い切り口をたくさん持っておく」という点が重要です。業界や会社ごとにキーとなる要素があるため、その観点をロジックツリーに組み込めるよう、日ごろから情報収集に努める必要があります。 分析スキルをどう向上させる? 分析を行う際、目の前の情報に飛びついて、初めから原因を勝手に予想してしまい、本質を捉えきれていない分析を行うことが度々ありました。面倒くさがって「What」を適当にしてしまうこともありましたが、分析は「What」と「Where」にこそ時間をかけて問題を特定すべきだと感じました。しかし、「What」を考えるにあたって、まず何をMECEを意識して分解するかが重要になります。自身の仕事においても、まず「What」「Where」のステップのクオリティを上げられるように努めていきたいです。 学びを実務にどう生かす? WEEK2で学んだことの共有やロジックツリーのフレームワークを活かせる業務の選定、過去のキャンペーンを取り上げて、講義と並行して学んだことをアウトプットできるような分析の場を設けることにも取り組みます。講義終了後、チームに共有します。

マーケティング入門

顧客視点を磨くための成功ステップ

顧客視点の見つけ方は? 「売れる」商品・サービスの見出し方・作り出し方について、3つの角度から考えることを学びました。 まず、顧客視点を理解することが重要です。顧客目線に立ち、彼らが本当に求めているニーズを考察します。顕在化しているウォンツを越え、顧客も気づいていないニーズを炙り出すには、カスタマージャーニー、行動観察調査、デプスインタビューが有効です。グループインタビューとは異なり、インタビュイーとの関係構築が必要です。 自社の強みをどう活かす? 次に、自社や自分の強みを理解することも欠かせません。自社の技術やブランド価値をしっかりと踏まえることが大切です。 心に残るネーミングとは? 最後に、ネーミングも重要です。覚えやすくユニークで、用途を連想しやすい名前が求められます。 振り返ると、顧客視点を持っていると自負していましたが、実際は自分の強みを出発点としていたことに気付きました。 1. 想定顧客層をいくつか仮説で洗い出してみます。 2. それぞれが求めていることを考え、顧客になりきってカスタマージャーニーを脳内で展開してみます。 3. 接点のあるお客様と直接お話しする機会を設け、深層まで話す時間を検討します。 4. 同業者や仲間と率直にニーズを共有し、得た情報からヒントを探ります。 5. 最後に、自身の強みやブランド価値を再度見直し、顧客ニーズとの交差を見つけます。 顧客ニーズとの交差を探るには? これらのステップを時間をかけてじっくり考え、可能な限り多くを書き出すことが課題です。お客様との直接の対話や、SNSでの意見収集も適宜活用します。同業者との対話では仮説を元に情報を裏付け、確信が得られない場合はそのまま保留にします。

データ・アナリティクス入門

小さな仮説が大きな発見に

なぜデータを分ける? まずは、分析はデータを分けて整理するところから始まると感じました。各要素や性質の細部まで明確に把握してから整理することが、効果的な分析につながると実感しています。また、比較対象や基準を設け、データを比べることで意思決定を支援する効果にも大きな意義があると印象に残りました。 どこを重点分析? 動画学習では、帰還した戦闘機の被ダメージ部分とそうでない部分、さらにその他の箇所について、どの部分の分析が有用なのかという問いかけがありました。帰還しなかった戦闘機では、被ダメージの少ない部分に致命的な損傷がある可能性を想定し、その箇所を中心に分析すべきだという仮説思考を学び、これまでになかった視点を得ることができました。 データで判断する? また、データの収集や分析の目的は、それを基にした適切な意思決定にあると感じます。意思決定を円滑に進められるよう、データ分析のスキルを磨いていく必要性を強く意識するようになりました。 売上の謎は何? 売上分析においては、課題の真因を明確にするために、売上に直結する各種データをどのように収集するかが重要です。過去の実績や予算、さらに他社の数値との比較によりギャップを把握し、原因を推察して仮説を立てるプロセスは、正確な分析に寄与するというイメージが湧きました。 本質はどう捉える? 最後に、データ収集の際は、必要な要素の抽出を慎重に行うことが求められます。MECEの思考法を活用し、要素の抜け漏れを防ぐとともに、各項目に適した分析手法を検討することが大切です。データそのものの生成に注力するのではなく、本質が何かを見極め、意思決定を促す資料として仕上げることが、最も重要であると感じました。

データ・アナリティクス入門

データ分析の本質を学ぶ喜び

分析手法とは何か? 分析とは比較を通じて行われ、仮説を立てた後にデータを収集・加工することで得られる気付きが重要なプロセスです。定量分析の視点としては、インパクトの大きさ、ギャップ(差異)、トレンド(変化)やばらつき(分布)、パターン(法則)を考えることが重要です。データの代表値として単純平均、加重平均、幾何平均などを使い、ばらつきを見るためには標準偏差をとらえる方法が有効であることが分かりました。また、データを扱う際には、加工してビジュアル化することで一目で理解できるグラフを作成することも重要なプロセスです。 データの特異点をどう見つける? データ分析ではまず平均値を考えがちですが、データの散らばりから特異点を見つけることも重要だと分かりました。そのため、業務(調査系)で平均値のデータを参照する際は、背景に注意し、表面上の見栄えに騙されないよう気を付けたいと思います。また、実証実験で扱うデータについても、属性ごとのデータを無作為に取って平均値を出すのではなく、何と比較するのかを念頭に置き、そのデータで何を伝えたいのかを考慮してデータ分析の設計を進めたいです。今週のGailで学んだように、グラフには特性があり、自分の伝えたいデータをどのようなグラフを使って表現するかを慎重に検討することが重要です。 幾何平均やグラフをどう活用する? 今回学んだ幾何平均は耳慣れない単語だったので、自分でもう少し調べてみたいと思います。また、エクセルなどでよく使うグラフごとの特性について詳しく調べ、どんな場面でそのグラフを使用すべきかを理解できるようにしたいです。今回の学びを定着させるために、実証実験でデータ取得を検討しているメンバーに共有する予定です。

データ・アナリティクス入門

比較で深めるデータ分析の極意

比較で何が見える? WEEK1で学んだことにより、分析の基本は比較であるという理解が深まりました。例えば、A/Bテストでは、可能な限り条件を揃えた上で変更点を明示し、仮説を試すことによって、収集データの精度が向上します。これにより、データを活用した問題解決の要因分析と解決策の選択に深みが出てくると考えられます。 問題解決の流れは? 問題解決のステップには以下の要素があります。まず、問題箇所を明確化し(what)、次にその箇所を特定します(where)。続いて、原因を分析し(why)、最後に解決策を立案する(how)という流れです。特に重要なのは、whyでプロセスを細分化し、howでは複数の選択肢を洗い出して根拠に基づき絞り込むことです。 A/Bテストはどう? 手段としてのA/Bテストは、A案とB案を比較するためのテストで、できるだけ条件を揃えて比較対象を明確にすることが肝心です。このテストを用いて、データ分析の精度を高め、より良い問題解決に繋げることが可能です。 提案の工夫は? 私の業務ではWebマーケティングのような高速な仮説検証はできないものの、提案を行う際には、条件を可能な限り統一したプランAやプランBを提示し、違いを明瞭にするよう努めています。これにより、提案内容をブラッシュアップし、上長の意思決定のポイントを把握することができます。 予算説明の極意は? また、近々、来年度の予算計画について上長に説明する機会があります。その際は、過去のデータの傾向を踏まえて、変動の大きい部分を中心に複数のプランを提示します。プラン間の違いを明確にし、上長の意思決定を理解することで、計画の精度を高めていきたいと考えています。

戦略思考入門

効率化と収益アップを目指す視点の磨き方

材料費はどう見直す? 規模の経済性について、自社の商品製造におけるコスト削減が課題として浮上しました。材料費を削減するためには、大量の材料を購入しなければならず、その量は50年分にまで及びます。もし使い切れなければ廃棄することになり、また使用可能でも品質のために独自の基準で支障が出るという話を、学習の当日に自社内で聞き、大変驚きました。購入時のコストのみに目を向けるのではなく、材料の保管や廃棄にかかるコストもトータルで判断する必要性を強く感じました。 多角化は収益貢献? また、範囲の経済性に関しては、多角化を進めるにあたって本当に収益に貢献するのかを考慮する視点が大切であることを再確認しました。 実践はどう進む? 総合演習では、全体的な視野で事例を検討する機会がありました。これまで学んだ知識を活かしつつ、足りない情報も収集し予測を立てるという、実践的な演習となりました。特に人件費や燃料費、現在の人口動態など多岐にわたる情報を取り入れた視点で学ぶことができました。 最適策は見つかる? 収益向上の観点から見ると、材料の購入方法や発注単位についても、他部門のことであっても自分のこととして考えられるようになった気がします。効率的に業務を進めるための最適なアプローチを発見する視点を持つことができたと思います。 業務判断は合ってる? 自分の部署では業務管理を通じて収益アップを目指しています。そのため、一つ一つの業務判断が本当に効率化と収益につながるのかを精査していきたいと思っています。こうした視点を持つには経験が必要かもしれませんが、見るべきポイントを自分なりに絞って、業務の見直しを図りたいと考えました。

戦略思考入門

顧客の本音で磨く戦略

顧客が選ぶ理由は? 顧客に選ばれることがビジネスの成否のスタート地点であると再認識しました。顧客のニーズを深く理解するとともに、競合他社の情報収集と分析を通じ、自社との差別化ポイントを明確にすることが重要だと感じました。 施策の効果はどう? また、差別化施策を実施する際には、その施策が本当に効果的かどうかを慎重に確認する必要があると学びました。マーケティングの3C分析では、特に他社の情報について、製品、サービス、スタッフ、チャネル、イメージの5つの要素を漏れなく把握することが大切だと理解しました。 戦略の選択はどう? さらに、Porterの基本フレームワークでは、「コスト・リーダーシップ戦略」「差別化戦略」「集中戦略」の中から自社に有効な戦略を選択する必要があると知りました。一つの戦略に固執せず、場合によっては二つの戦略を組み合わせることも有効であり、経営環境に応じた柔軟な戦略見直しが求められていると感じました。特に、コスト・リーダーシップ戦略と差別化戦略の両立については、自社でも検討すべき点だと思いました。 分析で見える強みは? さらに、VRIO分析を通じて、競争優位性の源泉や、組織面での強みを再評価する良い機会となりました。自社の戦略見直しにあたっては、現在の差別化戦略のみならず、コスト・リーダーシップ戦略の有効性も検討し、ファイナンシャル情報を基にコストの分析や価格戦略の見直しを提案していきたいと考えています。 競争優位伸ばすには? 加えて、VRIO分析で特定された自社の競争優位性の強みをさらに発展させるため、組織面の課題に対しても、業界内外での人材獲得競争に勝つためのプランを策定し、提案する所存です。

データ・アナリティクス入門

分析で見つける自分の可能性

なぜ分析は重要? 分析とは、単にデータを分類し比較するだけでなく、目的に沿った深い理解を得る手法です。基本となる4つのステップ―目的の明確化、仮説の立案、データ収集、結論付け―を踏むことで、より有意義な結果を導き出すことができます。 比較対象はどう決定? 分析を行う際は、比較対象の選定が重要です。分析したい要素以外の条件を揃えるとともに、目的に合った比較対象を選ぶことで、情報が正確かつ具体的に浮かび上がります。 受動から能動へは? これまで、航空会社での営業活動において、社内の分析チームから共有されたデータやコメントを受動的に読み取っていました。しかし今後は、共有された情報に頼るだけでなく、自ら積極的に情報を集め、複数の視点から状況を把握できるよう努めたいと考えています。 予約状況はどう見る? 例えば、週間予約動向の分析では、毎週発表されるどの便・クラスの予約状況が一定の割合で埋まっているというデータを参照するだけでなく、先週との比較や他社の状況との違いを検討し、より広い視野で状況を評価していきたいと思っています。 売上分析の切り口は? また、売上実績の分析においては、単に他社や昨年度同月との比較にとどまらず、国籍、性別、年齢別のデータも取り入れ、顧客のニーズをより深く探る視点を持ちたいと考えています。 仮説設定はどうする? このような分析を行う際には、まず「何を知りたいのか」という目的を明確にし、データを眺める前に自分なりの仮説を立てることが大切です。数値をただ確認するのではなく、自身の考えを持ってさらに深堀りし、既存のコメントに影響されすぎず、自らの視点でデータを解釈する姿勢が求められています。

クリティカルシンキング入門

イシュー中心で見えた問題解決の真髄

イシュー特定の重要性とは? 「イシュー:「今ここで、答えを出すべき“問い”」というテーマについて考え始める際に、まずイシューを特定することが重要です。常に「問い」を中心に考え、それを組織内で共有し、一貫して押さえ続けます。組織全体で協力して解決を図るためです。 何に注意して進めるべきか? 注意点として、いきなり打ち手に飛びつかないことが挙げられます。目先の課題形成や改善策を実行するだけでは、本質的な解決に至りません。課題の根本原因を抑えることが重要です。施策立案前には仮説を構築し、施策の効果検証を行います。また、上司や同僚、取引先との情報共有や報告も欠かせません。 イシューの共有がなぜ重要か? 自身のメイン業務である「仮説構築~施策立案~効果検証」において、イシューの特定やイシュー中心の施策進行、イシューの共有は必須スキルと感じています。本質的な課題を特定するスキルに加えて、組織全体に齟齬なく共有できるスキルを合わせることで、組織全体で正しく方向性を認識できるよう努めてまいります。 精度向上のために何をすべきか? 次に、現状分析の精度向上についてです。自社だけではなく、競合他社のデータも収集し分析することで精度を高めます。また、短期的にKPIの確認を行い、早期に問題を特定可能な体制を作ります。 フィードバックの活用法は? さらに、社内外からフィードバックをもらうことも大切です。内部ミーティングにおいては、マーケティングチームや他の関連部門と定期的な会議を開催し、見落としている可能性のあるイシューや課題を共有します。また、外部のコンサルタントへ意見を求め、独自の視点でイシューを評価してもらいます。

データ・アナリティクス入門

発見!数字が紡ぐ成長物語

現状と目標はどう? データ分析の基本は、まず現状を正確に把握し、理想の状態を明確にすることにあります。現状を理解した上で目標を設定することで、実現可能な改善策の検討が可能となり、より効果的な意思決定につながります。 比較で見えるものは? また、分析作業においては、異なる時期やグループ間での比較が鍵となります。比較を行うことで、問題点や改善策が明確になり、データから得られる示唆が深まると感じました。 切り口の変化に気づく? さらに、データの分解や分類、そして視点の切り替えを適切に行うことが分析の精度向上に直結します。目的に合わせた切り口でデータを見ることで、従来は見落としがちな傾向や改善点が浮かび上がり、最終的に意思決定を行う上で必要な情報が明確になります。 グラフで何が分かる? 実務での分析において、ヒストグラムや散布図を取り入れる試みを行いました。これまで平均値や中央値といった基本的な数値だけで評価をしていたため、賃貸物件の募集データにおけるばらつきや分布の傾向を見逃していました。しかし、ヒストグラムや散布図を作成することで、特定の物件の賃料が極端に高いまたは低いケースが存在していることに気づくことができ、単純な平均値だけでは把握できなかった重要な情報を得ることができました。 次は何に注目する? 今後は、データ収集時に注目すべきポイントや重要な変数を明確にし、分析の目的に合ったデータを選定することを徹底します。また、定期的にヒストグラムや散布図を作成してデータのばらつきや傾向を常時確認し、分析結果を関係者に報告してフィードバックを受けることで、さらなる改善を進めていくつもりです。

「本 × 収集」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right