データ・アナリティクス入門

論理で切り開く自分革命

状況整理の意義は? 直面している状況を具体的に整理し、何が問題なのかを明確にするプロセスが非常に役立ちました。特に、あるべき姿(To be)と現状(As is)のギャップを定量的なデータをもとに洗い出すことで、客観的に問題点を把握できるようになったと感じます。 課題の対処法は? 何から取り掛かるべきか迷ったときは、What(何が)、Where(どこで)、Why(なぜ)、How(どうやって)のステップを参考にすることで、論理的に整理しながら課題にアプローチできました。たとえば、収支の問題に直面した際は、売上と費用に分けてどこに課題があるのかを、ロジックツリーを活用して可視化する手法が有効でした。 学びや実感は? また、クライアントが提示する課題が本当に解決すべき問題であるかを見極めるために、内部の上位者とのディスカッションを通じて仮説を壁打ちする機会が持てたことは、より良い提案や新たな切り口を考える上で大いに学びとなりました。これらの経験は、問題解決の手法の幅を広げ、実務における対応力を高める大きな糧となっています。

マーケティング入門

売れない商品に価値を見出す法則

無意識を変える重要性は? 無意識に「何があったら良いか」や、「なぜ売れないのか」といったことを考える意識を持つことが重要だと感じました。ライブ授業で完全メニューのラインナップを考える際にも、なかなか頭が切り替わらず、何を提案するべきかが思い浮かびませんでした。そのため、日頃からの意識が大切であると実感しました。 売れない商品の価値は? 自社においても売れない商品がありますが、売れない時にそのものの価値だけを考えてしまいがちです。しかし、全く売れない場合や、モデルライフサイクルが古くなった時には、何を売り、誰に売るかといった基本的な点に立ち返り、価値を見せられているのかを考えることにも意味があると感じました。 魅せ方改善は可能? 売れない商品を目の前にした時、その価値だけでなく、魅せ方に何が違うのか(たとえば、CMやSNSを通じて行われたことや、口コミなど)を考え、顧客に価値が伝わっているのかを見直すことも面白いと感じました。この考え方は、危機感を持つ意味でも、新しい気付きが得られると考え、実践しています。

データ・アナリティクス入門

「成功と失敗の両面から学ぶ分析術」

分析の本質とは? 分析の本質は比較であるということを学びました。適切な比較対象を選ぶことが重要で、同じ基準で比較することが求められます。分析の目的を明確にし、何を明らかにしたいのかを考えた上で、それと比較するものを決めるようにしています。 生存者バイアスとは? また、生存者バイアスに引っ張られないように注意し、成功談だけでなく失敗談や隠れた事実にも目を向けるように努めています。新規プロジェクトやビジネスの検討の際には、比較対象を利用した分析を重視して提出しています。 口頭説明からの変化は? これまでは上司や他部門に説明する際に、数字や分析を用いずに口頭で説明することが多かったのですが、今後は分析結果をもとに対峙するように心がけます。休み明けに提出する会議資料や、副社長とのミーティング用資料でも早速この方針を実践するつもりです。 比較対象の導入はどうする? 事実の数字を列挙するだけでなく、その数字を示す必要がある理由や目的をまず考え、適切な比較対象を導入して分析し、説明できるよう取り組んでいきます。

デザイン思考入門

SCAMPERで広がる発想の世界

発想法はどう広がる? 発想すること自体はこれまで好きで、仕事の中でも活用してきましたが、発想法という体系的な方法論が存在することは知りませんでした。今週は、その存在に気づき、新たな知識として楽しく学ぶことができました。 SCAMPERは魅力的? 特にSCAMPER法は、全体としてではなく部分的な着眼点を提供してくれる面白いツールだと感じました。業務だけではなく、日常生活のあらゆる場面でも、このツールを活用してアイデアを生み出すヒントにしたいと思います。 本質はどう見える? 所与の事柄に対して「取り去る」「代用する」「再構築する」といった視点で考えること自体が、物やサービスの本質を見直し、新しい発想に導くエクササイズになると実感しました。 実践はどんな刺激? また、ある教材の事例を通して課題定義から解決に向けた発想法を、さまざまなツールとともに体系的に学ぶことができました。さらにグループワークでは、ほかの受講生から新たな発想の実践方法を学ぶ機会があり、大変刺激を受けることができました。

データ・アナリティクス入門

数値で読み解く問題解決の道

本当の問題は何? 問題が生じると、すぐに解決策を講じたくなるものですが、まず「何が問題なのか」や「その原因はどこにあるのか」を明確にすることが重要です。何気なく動き出すと、的外れで効果のない対策に陥る恐れがあるため、「what」「where」「why」「how」の順に問題解決のステップを踏むべきだと感じました。 ギャップはどこにある? また、問題を特定する際には、望ましい状態(あるべき姿)と現状とのギャップに着目することがカギだと学びました。さまざまな数字に着目することで、そのギャップを具体的に把握できることも実感しています。 理想は本当に正しい? さらに、自身の業務を振り返ったとき、まず「あるべき姿」が明確に設定されているかどうかに疑問を感じる場面があると気づきました。ギャップの検証が可能な状態で理想の状態を決め、その認識を他者と共有しなければ、正確な問題解決は実現しにくいと思います。 今後の対策は? 今後は、この点を意識して取り組むことで、より効果的な問題解決に結びつけていきたいと考えています。

アカウンティング入門

本物の経営は数字だけじゃない

カフェ経営のP/Lを理解? カフェ事業を通じて、P/Lの構造について学びました。同じカフェでも、それぞれのコンセプトによって現れる数字や構造が異なることが分かりました。目先の利益だけを追求すると、経営者が持つ価値観やコンセプトが変わり、一時的に利益が上がるかもしれませんが、そもそもこの事業を始めた理由が不透明になり、数字に振り回される経営につながる点が興味深かったです。 子会社の価値観は何? また、各子会社では実際に行う事業が異なるため、単純に横並びで利益を比較するだけでは不十分です。それぞれがどのような価値観を大切に事業を進めているのかを考え、その上で現在の利益構造や事業活動がその価値観を十分に反映しているのか、もし改善の余地があるならどの部分に手を打つべきなのかを検討することが必要だと感じました。 経営層は何を見出す? さらに、経営層をはじめとするステークホルダーは、今回のトピックのP/Lにおいてどの部分で「儲け」や「将来性」、「投資価値」を見出しているのかという点についても改めて考えさせられました。

リーダーシップ・キャリアビジョン入門

エンパワメントで成果を引き出すコツ

相手の考えはどう? エンパワメントにおいては、相手の仕事の進め方に対する考えを質問を通じて理解することが必要だと感じました。目標設定においても、目標を実行する本人が納得感を持てるようにすることが重要であり、達成基準が明確になるよう具体性を持たせることが求められます。 認識合わせはどう? これまでのエンパワメントでは、一方的に指示をしてしまい、後に相手との認識の違いを感じることがありました。今後は、普段から任せる仕事について、相手と認識をしっかりと揃えることを心掛けたいと思います。目標設定の際には、本人が参加できるよう問いかけを通じて促し、本人が実行可能な内容であるかを十分に考慮するようにしていきます。 やる気、どう引き出す? 日常の仕事の場面では、問いかけを通じて相手がどのように仕事の進め方を考えているのかを理解し、適切な説明ができるように努めたいと思います。目標設定においても、本人が参加し納得感を持てるように働きかけ、その結果として本人のモチベーションを高められるようにしたいと考えています。

マーケティング入門

受講生が語る狙いの秘訣

ターゲット変更で効果は? 商品自体は変更せずにターゲットを変えるだけで、売上に大きな影響があるという点に驚かされました。困難なプロセスを経る必要があることは想像されますが、結局は顧客自身が気づいていない本当のニーズに気づくことが要となると感じました。 新事業の位置づけは? 新規事業企画においては、二つの軸を使ったマッピングにより、サービスの位置づけが明確になることが分かりました。例えば、観光分野では、どの地域のどのような顧客を対象とするか、また彼らに旅行に来てもらうのか、実際に現地に足を運んでもらうのかで、企画の方向性が大きく異なります。私は、地域の魅力を引き出す役割を金融機関が果たし、同じ考えを持つ仲間と協力するモデルを模索したいため、どこで差別化するかをさらに探求したいと思っています。 失敗から学びが? また、成功事例は非常に参考になりましたが、逆にマーケティングの失敗事例にも関心が向きました。失敗後のリカバリー策や撤退の判断についても、事業運営を学ぶ上で重要な要素であると考えています。

データ・アナリティクス入門

数字が語る学びの秘密

データ比較の基本は? 他のデータと比較することが、意味を見出すうえで重要だと理解していましたが、件数が多いデータ同士の比較では、代表値を用いる必要があることや、データの分布状況を考慮する必要がある点まで深く意識したことはありませんでした。今回の学習で、データをビジュアル化して各々の特性を目で確認することで、仮説が立てやすくなる一連の流れが理解でき、非常に勉強になりました。 数値の習得方法は? ただ、加重平均や幾何平均、中央値、標準偏差といった細かな数値の算出については、繰り返し実践しながら学んでいかないと身につかないと感じました。そのため、何度も反復して練習する必要性を痛感しました。 資料作成にどう活かす? 今後、資料作成の際に付録データを掲載する場合は、今回学んだデータのビジュアル化を活かし、読み手に伝わるようなデータ表現を工夫してみたいと思います。また、データ分析の際には、どのような状況でどの代表値が適切かを踏まえ、代表値と散らばりを考慮して数字を集約していくことを意識したいと考えています。

データ・アナリティクス入門

振り返りが照らす学びの道

目的と手段の違いは? 分析に取り組む際、まず「要素の分類化」や「比較」という視点を確認しました。分析はあくまで手段であり、目的ではないという点が印象に残ります。これにより、仮説を元に進める中で、途中から「差分探し」が目的化してしまわないよう注意する必要性を感じました。 レポート設定の意義は? また、定期的な分析レポートを実施する際には、改めてその目的を明確に設定することが大切だと再認識しました。業務の中で、分析自体が目的とならず、真に必要な意味を見出すために、常に差分に敏感になり、その差分がどのような意味を持つのかを意識する習慣を身につけることが求められます。 PDCAはどう実践する? さらに、すべての分析には仮説を立て、得られた結果に基づいて施策のPDCAサイクルを実行することが基本です。報告時には、ただ結果を示すだけでなく、分析の目的や背景を相手に伝える工夫が必要です。分析を終えた後は、やりっぱなしにせず、必ず振り返りの時間を設け、次のアクションにつなげることが今後の改善に寄与するでしょう。

データ・アナリティクス入門

原因探求から始まる成功への道

どうして原因分析をする? 問題解決のステップであるWhat、Where、Why、Howの流れが非常に印象に残りました。特に、どうしてもHowの部分に注目しがちですが、その前の段階で問題を明確にし、原因をしっかりと特定して分析する過程こそが、本質的な解決につながると感じました。 なぜ退会が増える? また、コミュニティ運営において退会者の増加という現象を分析する際にも、このステップが有効であると考えました。「なぜ退会が起こるのか」という問いに対し、まずは原因の仮説を立て、問題を具体的に洗い出すことが大切だと思います。 なぜ数値化で解決? そのため、現状、退会時に取得しているアンケート結果を活用することが有用だと感じます。アンケートの内容を分析し、所属期間中に行われたイベントなどの傾向と照らし合わせることで、理想的な状態とのギャップが明確になるのではないでしょうか。ギャップを数値として示すための具体的な指標についてはまだ模索中ですが、数値化が進めば対策の策定もより容易になると感じました。

クリティカルシンキング入門

具体と抽象で織りなす理解の旅

新しい考え方は? これまで、フレームワークやその活用経験が物事を考えるために必要だと考えていましたが、今回の学びで、根本的な考え方自体を見直す必要性に気づかされました。 分解のコツは何? 特に、物事を分解して考える際には、具体的な面と抽象的な面のバランスをとりながら、上下左右に視点を移動して検討する手法が印象的でした。この方法により、考え方に偏りが生じるのを防ぎ、全体像を捉えやすくなると感じました。 比較検証はどう考える? また、MECEや3つの視といった考え方は、他社製品や技術との比較検証にも有用だと思います。MECEで必要な比較項目を洗い出し、3つの視では相手に合わせたクリティカルな要素を抽出することで、プロとコンの両面を効果的に整理できると考えています。 意見交換で工夫は? これらの手法は、提案や報告、さらにはプロジェクト内での意見交換の際にも役立つと実感しました。相手に合わせたアプローチを行うためには、柔軟に視点を変え、考え漏れがないよう努めることが不可欠であると感じています。
AIコーチング導線バナー

「本 × 出す」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right