データ・アナリティクス入門

同条件で実感!比較のヒント

どうして比較するの? 分析の基本は「比較」にあります。しかし、比較を行う際には、正しい対象同士を照らし合わせなければ、正確な結果は得られません。たとえば、単に全体の平均値を比べるのではなく、同じ条件下(Apple to Apple)での比較を意識することが重要です。具体的には、ある施策の効果を評価する場合、対象は施策を受けたグループと、受けていないグループに限定し、その効果が明確に反映されるように設定する必要があります。また、比較を行う際は、外れ値の有無やデータの対象数、そして分析の目的に沿った比較がなされているかどうかにも注意を払うことが求められます。 比較の実践はどう? 現在、売上やマーケティングの集計そのものはしていませんが、常に「比較」を意識しながら、比較対象が正しいかどうかを確認する視点を持つよう心がけています。目的に合った分析であるかを常に考え、比較した結果をどのように的確に示し、他の人にわかりやすく伝えるかという点が大切だと思っています。 結果提示の工夫は? 今週の学習内容については、特に疑問に感じた点はありませんでした。ただし、グラフや推移グラフ以外の方法で、他の人に理解しやすい分析結果の提示方法について、どのような工夫がされているのか知りたいと感じています。

クリティカルシンキング入門

切り口で掴む自分だけの学び

データはどう分ける? データの傾向を把握するためには、まず分解してみることが大切です。1つの切り口だけでは明確な傾向が見えなくても、別の視点から検討することで新たな発見につながります。諦めずに複数の切り口で試す姿勢が、効果的な分析の鍵です。 来場者減少の理由は? 今週の例では、美術館の来場者減少の理由を探る中で「個人客」と「大人」という要素が浮かび上がりました。しかし、これらをすぐに結びつけ「大人の個人客が減っている」と断定するのではなく、各要素を独立した切り口として扱い、さらに深掘りしてみるアプローチが推奨されます。 本当に大丈夫? また、社内アンケートの分析経験から、上司に「見つけた要素を安易に結びつけないように」と指摘されたことがあります。締切のある報告資料では、急いで結果を出すあまり、自分に都合の良い見方をしてしまいがちですが、結論に飛びつく前に「これで大丈夫か?」と自問する習慣が、正確な分析を進める上で非常に有用です。 自由記述はどう解析? 今回の例は数字データを対象にしていましたが、実際の業務では自由記述の設問を分析することもあります。そういった場合も、データを分解して複数の切り口で考察し、さらに言葉の分析方法を試してみることで、より深い理解につながると感じました。

データ・アナリティクス入門

仮説と現場で読み解く数字の物語

現場で何が起きる? 平均値などの代表値を把握するだけではなく、現場で実際に何が起きているかを想像しながらデータに向き合うことが大切です。そのため、自分自身で仮説を立て、仮説検証型で分析を進めることが求められます。分析の目的に応じて比較する対象も変わるため、たとえば「夏の気温は本当に上昇しているのか」という問いに対して、単純に1年前のデータや他の地点のデータと比較するだけでは、十分な答えは得られにくいでしょう。 ビジュアルで何が分かる? また、代表値の理解をより精緻なものにするために、データのビジュアル化を試みることが重要です。第三者に伝えるときだけでなく、自分自身で数値を分析する際にも、数字だけでは見逃しがちな現場の情報に焦点を当てるため、ビジュアル化の活用を心がけましょう。 AI活用はどう役立つ? さらに、医療施設ごとの売上や従業員ごとの活動履歴など、大量かつ複雑なデータに関しては、定型的な加工に陥りやすい傾向があります。まずはデータの分布を把握するためのビジュアル化を行い、分析の目的に合ったデータの特徴を考察する時間を確保することが推奨されます。このプロセスにはAIの活用が有効であるため、迅速に作業に取り掛かれるよう、使用するプロンプトをあらかじめ保存しておくと便利です。

データ・アナリティクス入門

要素分解が開く学びの扉

分解と分析はどうする? 分析を行う際は、まず対象を要素に分解することが重要です。ロジックツリーやMECEの考え方を活用し、問題解決のステップとしてWhat、Where、Why、Howに分けることで、あるべき姿と現状、そして現状と理想のギャップを正確に把握できるよう心がけています。 店舗のギャップは? また、実務の現場では、宿泊客のデータ比較や社内の研修で、グループ内の各店舗のありたい姿を設定し、現状とのギャップを店舗ごとに分析する取り組みが行われています。このような分析により、各店舗の改善点が明確になり、実効性のある対策が立てられるようになっています。 研修資料はどう整える? さらに、新入社員向けの研修資料作成においてもMECEを意識し、内容を整理することが求められています。現状、社内向けの資料が十分に整備されていないため、今回学んだことを活用して、より実用的で分かりやすい資料作りに努めています。 口コミ低評価をどう克服? 口コミ評価が低い店舗を訪問する場合、現状とあるべき姿のギャップを3つ以上洗い出し、具体的な改善点を見つけることが求められます。初回の動画視聴だけでは本質を理解しきれないため、何度も視聴しながら自分の手でメモを取ることで、理解と記憶の定着を図っています。

データ・アナリティクス入門

データ分析で社会課題を解決する心得を学ぶ旅

分析の本質を学ぶ意義とは? 講義開始直後から、分析の本質について明確に示されるので、動画の解説が頭にスラスラと入りました。まず、分析の本質は「比較」であり、適切な対象を比較することが重要です。迷ったときは、分析の目的に立ち返ることが大切で、その際にはデータに偏りがないかどうか、「生存者バイアス」に注意することが求められます。このように、6週間の講座を通じて、最も重要な「心得」を学ぶことができました。 仮説設定の流れをどう進める? 私は、社会課題に対する「仮説」をもとに、行政などのオープンデータを分析し、数字的な事実を裏付ける仕事をしています。今回は、体系的にデータアナリティクスを学ぶことで、仮説設定や分析対象の選定をスムーズに行いたいと思いました。 データ分析の実践ステップとは? 具体的には、以下のアクションを実行しようと考えています: - データ分析について、チーム内に基礎的な知識を共有する。 - チームメンバーが取り組んでいる社会課題に関連するオープンデータを収集する。 - 仮説を洗い出し、それを裏付けるための数字を設定する。 - 適切な比較対象をピックアップする。 このような手順を通じて、社会課題の解決に向けた効果的なデータ分析を進めていきたいと思います。

戦略思考入門

優先順位で事業成功を掴む方法

判断基準をどう考える? 戦略的な選択を行うためには、優先順位づけをする際の判断基準を明確にすることが重要です。情報が不足している場合は、仮説思考を活用し、複数の仮定を設定して検討することが求められます。判断基準を考える際は、複数の視点から多角的に検討することが効果的です。優先順位をつけるということは、優先対象を決めるだけでなく、優先しないものを切り捨てる選択も含まれます。 国際事業の戦略は? 現在、私は4カ国で事業開発に携わっていますが、すべての国においてコミットしており、その結果、市場での優位性や取り組みの実現可能性が低い国にも一定のリソースを割いてしまっていることが課題となっています。このような状況では、捨てる選択をすることが必要とされています。 合理的選択の基準は? 選択を合理的に行うために、以下の判断基準を設け、客観的に事業開発に取り組む考えです。それは、(1)市場において当社の優位性があるか、(2)短期間で成果達成が可能か、(3)取り組みに十分なリソースを割けるか、(4)本社の戦略に合致しているか、という基準です。12月までにこれらの基準に基づき、取り組む事業を絞り込み、各事業のタイムラインやチーム体制を明確にして関係者からの合意を得ることを目指します。

データ・アナリティクス入門

データが拓くビジネスの未来

分析の本質とは? 分析とは、物事を分け整理することと、比較対象や基準を設けて比較することの両面が本質だと感じました。また、データ分析の目的や、どの項目をどのような形であたりをつけるのかという入り口の考え方も学べ、基本的な考え方がしっかりと理解できたと実感しています. 将来の分析戦略は? 今後は、顧客IDを活用して、CRM、Web行動、イベント、購買実績の時系列統合基盤を構築する力を高めるとともに、ビジネスゴールを離脱点や購買シグナルなどの具体的な分析課題に落とし込むスキルを向上させたいです。また、転換率やLTVなどのKPIを定義し、ダッシュボード上でリアルタイムに可視化しながら、閾値やアラートを設計する能力も伸ばしていく必要性を感じました. 実行計画はどう? 具体的な行動計画としては、まずCRM/MAの構造とAPIについて学び、ダッシュボードの運用や自動連携が自在に行えるレベルまで習熟することを目指します。次に、顧客ID基盤を活用してデータの抽出と整形を行い、分析用CSVを定期的に生成できる仕組みを構築します。さらに、RやPythonを用いた回帰分析やクラスタリングなどの手法を実施し、得られた示唆を速やかに施策へと反映できるサイクルを確立する方針です.

データ・アナリティクス入門

ここにあった!生存者バイアスの真実

弾痕が少ない理由は? 今回の研修で最も印象に残ったのは、戦闘機の補強に関する話でした。弾痕が多く残っている部分ではなく、むしろ弾痕が少ない部分を補強すべきという考え方に驚かされました。この事例は「生存者バイアス」と呼ばれ、帰還できなかった機体の状況を無視すると正しい判断ができないという重要な教訓を示していました。 比較対象の選び方は? また、分析の基本は「比較」というシンプルな考え方に基づいているものの、適切な比較対象を選ぶことや、見えにくいデータに注目することの難しさと大切さを改めて実感しました。 データ比較で改善策は? 私が担当しているシステム開発プロジェクトにおいては、テスト工程でのバグ検出率向上が課題です。そこで、研修で学んだ比較の考え方を活用し、成功事例と失敗事例のデータ、たとえばテスト時間やレビュー時間を比較することで、より効果的な改善策を見出していきたいと考えています。 比較難点をどう乗り越える? ただし、比較対象の条件が必ずしも揃っていないケースや、対照となる対象そのものが存在しない場合など、現実のデータ分析では困難な点もあります。こうした状況では、新しいデータの収集や、比較方法の検討をさらに深掘りしていく必要があると感じました。

クリティカルシンキング入門

見える文章、伝わる心

どう視覚表現を改善する? 伝えたい内容を視覚的に伝える重要性を実感しました。これまで無意識に用いていたグラフや文字装飾、図表の配置が、読み手にとって混乱を招いていたと痛感しました。今後は、読み手の負担にならない表現方法を意識していきたいと考えています。 文章の魅力はどこ? また、ビジネスライティングのテクニックを学ぶ中で、文章そのものに問題がある場合も多いことに気づきました。これまで相手のせいにしていた自分の文章が、実は読み進めたくなる魅力を欠いており、見出しや内容が後回しにされる原因となっていたのかもしれません。 メール改善の工夫は? 特にメールや顧客向けの提案資料では、タイトルに視覚的なイメージや意外性を持たせ、本文では期限や対象などの重要情報を分かりやすく整理する工夫が必要だと感じています。メールは1日に数十件届くため、すべての文章を細かく読んでもらうのは難しい状況です。 提案資料はどう整理? また、提案資料においても、どこに重要な情報が記載されているのかが一目で分かるよう、必要なグラフを適切に選び、過剰な装飾を避けるシンプルな構成が求められます。今後は、伝えたい内容を正しい順序で確実に伝えられる資料作りに努めていきたいと考えています。

データ・アナリティクス入門

物流の待機料問題を解決する分析手法の習得

分析の基本とは? 「分析とは比較である」という教えについて学びました。これは、課題を要素に分解して整理し、個人や会社の状況に応じた基準(目的)を設けて、その要素と基準を比較することを意味しています。基準を「達成すべき目的」とすると、各要素の優先順位や捨てるべきところが明確になってくると感じました。逆に、基準に満たない要素は改善策の検討対象として捉えることができることも学びました。 物流業界での分析方法は? 私は物流会社で働いており、2024年問題の一つとして「待機料」の明確化が挙げられます。待機という問題を要素(要因)に分解し、それらを自社都合と輸送会社都合にグループ化することで、分析の対象が明確になると考えました。 データ活用で何が変わる? 現在、導入済みのアプリから取得できるデータを使い、要素を整理して分析対象を決定する予定です。本講座を通じて、適切な分析方法を理解していこうと考えています。 待機料と時間の相関は? 具体的には、待機料の標準偏差値を算出することで支払い金額の正常範囲を決定し、異常値はチェックする体制を構築します。また、待機料の発生要因と待機時間の相関関係を数値化し、どの要素に対して改善策を打つべきかを社内で共有します。

クリティカルシンキング入門

文章が伝わる!改善の第一歩

文章の意味は伝わる? 日本語を正しく使っているかと問われると、使っているつもりではあるが、実際にはその自信はなかったようだ。主語や述語の使い方だけでなく、隠れた主語や文の長さなどを普段は意識していなかった。そして、自分の文章が意味不明だと言われることが多かった理由が、ようやく分かったような気がして反省した。また、相手が何を求めているかによって理由付けが変わることは当然だが、自分の主張を押し付けていたと感じる部分もあった。こういった反省は数多くあり、すぐには改善されないかもしれないが、意識して取り組んでいこうと思った。 内容を絞る意義は? 現在、好取組事例やニュースを作成し、全国の対象者に向けて発信している。しかし、伝えたいことが多すぎて、しばしば文章がまとまらなくなってしまうことがある。今後は、読み手の立場に立ち、何が知りたいのかを考え、内容を絞って発信していくよう心がけたい。 質が向上する秘訣は? これらの好取組事例やニュースは毎月発行しているため、早速来月から改善を開始したい。インタビューの段階から書く内容を意識した質問を心掛け、意図する情報を引き出せるようにしていく。そして、上司が推敲を一度で終えられるような質の良い文章を目指したい。

データ・アナリティクス入門

データ分析の魅力に触れる旅

なぜ目的を決めるのか? 「分析とは比較なり」という言葉が分析の基本を表しています。まず、比較を行うための目的をしっかりと決定し、その目的に合った適切な比較対象を選ぶことが重要です。そして、得られた比較結果をどのように視覚化・言語化して伝えるかも、分析の重要な要素です。これらが全体的に連携し、一つの体系としてまとまっていることで、分析は効果的に行われます。各ステップで適切な判断を行うことにより、データ分析は精度を上げることができます。 有効なデータの活用法とは? プロジェクトの進捗状況の把握や遅れの可視化と原因分析、製品の製造データの分析、それを基にした工程改善案の提案、さらに最終製品の性能・品質データの分析とそのトレンドの原因の把握など、それぞれの場面で明確な目的と最終的な活用イメージを持って分析を行うことが重要です。これによって、効果的なデータ分析の結果を示すことができるでしょう。 データ収集から始めるには? 特に最終製品の性能・品質データの分析には豊富なデータがあり、因子もある程度特定されています。自らがデータを入手しやすい立場にあるため、早速データを集めて分析を進めていこうと思います。まずはデータの収集から始めてみます。
AIコーチング導線バナー

「本 × 対象」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right