クリティカルシンキング入門

データ分析の新視点で営業資料をブラッシュアップ

異なる視点でデータを分析するには? データを分解して考える際、When, Who, Whatの切り口を意識し、複数の視点で分析することがデータ分析に繋がることを学びました。様々な切り口から傾向を掴み、本当にその見方で合っているかという疑問を持ちながら丁寧に読み解くことが大切です。今後は、業務でデータ分析を行う際に発見した1つの傾向に満足せず、疑問を持ち、様々な切り口を意識して業務を見直していきます。 効率的な分析手法をどう見つける? また、データの切り口は最初から細かくせず、大→小の順で考えると分析しやすいことも分かりました。 どのように営業会議資料を改善する? 最近の営業会議資料の作成業務では、ありきたりな角度でしか集計・分析できていなかったことに気づいたので、今後は様々な角度から分析を行い、グラフを作成するつもりです。SNSのフォロワー数分析でも、大きな範囲でしか数字を分けていなかったため、細かく区切って分析し直そうと思います。 効果的なグラフ作成のポイントは? 会議資料の作成においては、データ抽出の対象範囲を見直し、どのような角度で分析が必要かを持論として上司に相談しながら進めます。グラフは見せたい内容によって変わるので、相手にとって分かりやすい分析の内容を心掛けます。 SNS分析を向上させる方法とは? SNSの分析に関しても、1つの大きな傾向に縛られず、切り口を変えて再度分析し直すことを念頭に置いています。

デザイン思考入門

共感で磨く顧客ヒアリング術

顧客課題整理は? 「顧客課題仮説」では、ユーザー、状況、課題、ソリューションをそれぞれ具体的に整理することで、単なるぼんやりした仮定ではなく、明確な言葉に落とし込むことができました。この手法により、経営者や従業員、支援者が共通のイメージを持ちやすくなったと感じます。 ヒアリングの進み具合は? 実際に経営者を対象に実践した際、項目ごとに整理されていることで、ヒアリングがスムーズに進み、受け入れやすい結果となりました。一方、ある飲食店の場合は、オーナーだけでなく、実情を把握している店長やホール担当へのヒアリングを次回実施することとなりました。もし項目化がなされていなかったなら、経営者の感覚だけでヒアリングが終わっていた可能性があります。 ユーザー深堀りは本当か? また、別の企業では、対象ユーザーが十分に深堀りされず、ニーズが曖昧な状況でしたが、今回の見直しを通じて、改めてユーザーの気持ちや共感を確認する機会となりました。順序は多少前後したものの、最終的にはユーザーの感情を基に課題を再検討することにしました。 共感が導く検討プロセスは? このプロセスでは、共感を出発点として課題を定義することが重視されました。基本的には決められた順序で進むのが望ましいものの、行きつ戻りつの中で課題を固めることも重要であり、仮に具体的なアクションに移していたとしても、ユーザーの共感が揺らいでいる場合は、再度立ち返って検討する必要があると感じました。

クリティカルシンキング入門

思考を鍛える新たな自分への挑戦

批判的思考の重要性は? ライブ授業を通じて、私の思考には偏りがあることを再認識しました。クリティカルシンキングは「批判的思考」と訳されることを受講前から知っていましたが、その批判の対象が自分自身であること、そして自分の思考をチェックする「もう一人の自分」を育てることが重要であることが強く心に残りました。ついつい自分に都合の良い考え方をしてしまいがちですが、常に客観的で批判的に自分に問い続ける姿勢を持ち続けたいと思います。 批判的思考はどう活かす? このような批判的思考法は、様々な場面で役に立つと感じます。私自身、管理職として日々様々な課題を解決し、意思決定を行う必要があります。その際、相手が何を求めているのか、目の前の課題の本質がどこにあるのかを、過去の経験に捉われることなく、常に目的を意識しながら客観的に思考することが重要であると感じました。このプロセスを繰り返すことで、適切な結論を導き出せるようになると思います。 意思決定をどう改善する? 意思決定の場面では、以下の点を意識して行動したいと考えています。まず、目の前の問題を構造化し、ロジックツリーを使ってアウトプットしてみること。そして、「だから何? なぜそうなるの?」と自分に問いかけ、批判的に見直すことで客観視します。また、自分の意思決定プロセスをアウトプットし、結論だけでなく、その結論に至るまでの考えを意識的に説明し、言語化することで理解を深めていきたいと考えています。

データ・アナリティクス入門

データ分析で競争力を引き出す方法

データ分析の本質とは? データ分析における本質は「比較」にあると言われています。この過程では、分析したい要素以外の条件を揃えることが重要です。適切な比較対象を選定し、分析の目的に沿った比較を行うことが求められます。 分析の目的設定はなぜ重要? まず、分析を始める際には、目的を明確にすることが必要です。そして、仮説を立て、それに基づいて優先順位を設定します。データの収集、加工、発見を経て、最終的には効果的な意思決定につなげていくのです。 成果を再現するには? 具体的な例としては、Aによる効果を分析する場面があります。この場合、Aが「ある場合」と「ない場合」を比較することが重要であり、分析はまさにこの比較によって成り立っています。特に営業職においては、成果が出ている活動の再現性を高めることが、組織の実績向上へとつながる可能性を秘めています。実績としては、販売実績やシェアが分かりやすいですが、行動としても活動日数や活動時間、活動製品内訳など、さまざまなデータが存在します。 比較を成功させるためには? 競合他社や都道府県別、営業社員別での比較を行う際には、まず分析の目的を明確にすることが肝要です。マネジメント業務では、売れる仕組みや自社製品の選定理由などを分析し、再現性の高いアクションプランの策定を推進しています。比較対象を選ぶ際には、目的に沿っているか、条件が均一かを確認し、分析を始める前によく見直すことが重要です。

戦略思考入門

学びの視点を広げる環境分析の力

目標達成の秘訣は? 目標を効率的に達成するためには何をすべきなのか、この問いへの答えを導くにはどのような流れで考えていくべきかを、今回の講義で学んだように思います。まず、今起きている事象の本質を見極めることが必要であり、そのためにはKSFを特定することが求められます。 視野拡大のコツは? 広い視点や高い視座で情報を収集し整理することで、全体像を把握することが重要です。これにより、大局を捉え、視野を広げて考えることが可能になります。ただし、自分の観点だけに頼ると見落としや偏りが生じてしまいます。そのため、フレームワークが非常に有用なツールとして役立ちます。フレームワークは単に埋めるだけではなく、各要素の整合性が取れていることが大切です。 環境変化の見極めは? 今回学んだ環境分析は、自分の業務において製品や技術の進化の方向性を見出したり、組織施策の考案に活用できると考えています。特に、自分が見えていない外部環境の変化が業界や製品に大きな影響を与える可能性についての話が印象に残りました。このような状況は、自業務でも起こり得ると考えており、外部環境分析に取り組むことの重要性を感じています。 実践で理解深める? 自業務における製品や技術、組織を対象に、フレームワークを活用して環境分析を進めていきたいと考えています。フレームワークの使用方法を理解するだけではなく、実践を通じて理解を深めることが必要だと感じています。

マーケティング入門

わかりやすさで広がる可能性

普及要件は何が重要? イノベーションの普及要件として、比較優位性、適合性、わかりやすさ、試用可能性、可視性が挙げられます。中でも特に重要だと感じたのは「わかりやすさ」です。顧客や使用者が具体的なイメージを持ちやすければ、試してみようという動機につながるためです。 顧客視点はどう大切? また、顧客ニーズに沿った商品を開発・販売していると、競合企業が似た製品を市場に投入してくることがあります。こうした状況で競合他社の分析に偏りすぎると、顧客本来のニーズを見落としてしまう恐れがあります。そのため、常に顧客視点を重視することが求められます。 市場導入はどう検討? 新製品を日本市場に導入する際は、イノベーションの普及要件を基に、顧客がどのようなイメージを持つかを十分に検討する必要があります。また、競合製品についても、売れているかどうかを判断するだけでなく、顧客がどのような印象を抱いているかを分析し、その結果を自社製品の改善に役立てることが大切です。 改善策は何がある? まずは、売れていない商品を対象に、なぜ売れていないのかを普及要件に照らして考え、どう改善すれば魅力的になるかをディスカッションすることが有効です。さらに、自社製品については、顧客面談や営業担当との同行などを通じて、私たちが伝えたいメッセージが正しく伝わっているかを確認し、より良いサービス提供につなげる努力が必要だと感じています。

データ・アナリティクス入門

比較思考で紐解く学びの極意

分析の意味は何? 「分析は比較なり」という言葉は、普段何気なく耳にするものですが、今回改めてその意味を強く感じました。データ分析において、必要な情報を集めることに注力し過ぎるあまり、単にデータを並べただけで満足してしまい、見る人によっては分析結果の捉え方に差が生じる場面があったと実感しています。動画学習では、適切な比較対象を選ぶことの重要性にも触れ、データを揃える行為は無駄ではないものの、分析の目的や見せ方を意識しなければ本来の意味での分析にならないということを認識しました。 物流の選定はどう見直す? この考え方は、物流部門における利用業者の選定や見直しにも応用できると感じます。たとえば、ある条件がある場合とない場合で、一律運賃が設定される荷主とそうでない荷主の運賃総額を比較する手法が考えられます。 大手と中小の差は? また、単純に大手業者と中小業者を料金面で比較するのではなく、企業の規模や対応する配送範囲が同様である業者同士で運賃を比較することが、より適切な分析につながると理解しました。 比較対象の妥当性は? さらに、自分が揃えたデータが本当に比較に適したものかどうか、常に振り返りを行うことが大切です。普段利用している輸送業者に注目し、過去の実績が明確な業者だけを比較対象にしている現状を見直し、新たな業者や新しい地区の業者も検討することで、より多角的な視点を持つことができると感じました。

データ・アナリティクス入門

問題解決力の高め方がわかる最高のストーリー

問題解決手順をどう進める? 問題解決のプロセスは、「What→Where→Why→How」の順で進めることが重要です。特に「How」の段階では、課題に対して複数の仮説を立て、それに基づいて具体的な対策(打ち手)を検討します。この際、効果、コスト、スピードなどの枠組みを用いると視覚化しやすくなります。 効果を測定するための方法は? 効果を測る方法としては、ABテストが有効です。ランダムにユーザーを対象としてテストを行うことで、より効果的な対策を実証できます。 打ち手を評価する際の注意点は? また、打ち手を検討する際には、決定要素を洗い出し、各項目に対してメリットとデメリットを評価します。仮説をもとに打ち手を考える際も、常に比較する意識を持つことが大切です。必要であれば、再度ABテストを行い、効果が高い対策を実施します。 プロジェクトで重視すべきポイントは? プロジェクトにおける課題解決業務においては、次のポイントを重視します。まず問題解決のプロセスを意識して、問題の所在とその本質的な要因を明確にします。その上で具体的な打ち手を考え、その効果を検証します。この状況でABテストが必要であれば、実施します。 新企画の決定基準はどう定める? さらに、新しい企画や打ち手を考える時は、決定の基準となる枠組みを明確にし、比較を行います。これにより、異なる打ち手の粒度を均一にし、論点を具体化します。

データ・アナリティクス入門

データ分析の本質を再発見!

分析と整理の違いは何か? 「分析」、「収集」、「整理」はそれぞれ異なる作業です。データ整理で分析が終わることもしばしばあり、比較対象があいまいになることもあります。また、見せ方に時間をかけすぎると、「相手に伝えたい」という本来の目的が不明瞭になることが多々あります。これは、「分析とは比較である」ことや「目的に立ち返ること」がしばしば抜け落ちがちだからではないでしょうか。楽な方に流れる思考や、目に見える分かりやすいものに飛びつきやすいバイアスに引っ張られる癖があります。自分の特徴を含めてこれらをしっかり俯瞰して整理しておかないと、学びの方向性やその捉え方がずれてしまう可能性もあると感じました。 常に数値を更新する重要性 販売状況や市況状況、社内状況の分析を進める中で、過去の基準や初期値がたびたび変更されてきました。分析が比較である以上、常に更新された数値のみが注目されることが多いです。このような状況では正確な分析ができず、意思決定に繋がらないと感じています。これはとても危険なことかもしれません。 データ整理はなぜ重要か? 様々な分野で目的とされることを視野に入れ、使用されるデータの洗い出しを行います。比較するためにも整理が必要ですので、いつでもデータを抽出できるよう、整理を行うことが重要です。整理された状態から、それぞれの目的に合わせた比較基準を設計することが求められます。

データ・アナリティクス入門

目的で広がる分析の世界

分析の目的は何? 分析は、目的に応じた比較作業として位置づけています。分析の際には、まず目的を明確にし、その目的に沿った仮説検証に必要な項目とデータを収集、分類します。そして、比較対象や基準を設定することで、結果が意思決定につながるよう意識しています。 データの見せ方は? また、データの性質に合わせた見せ方を心がけることが大切です。データ分析で明らかにしたい事柄に最適な表現方法を選ぶことで、無駄なデータ加工を避け、例えば帰還した機体を基に無駄のない結論を導くといった論拠のあるアプローチが可能になります。 仮説と経験はどう関係する? 実際、Webサイトのアクセス解析を日常的に行っているため、データから仮説を立てる経験はあります。しかしながら、売上向上や認知拡大、新規ユーザの獲得といった本来の目的達成のために、どの分析手法を用いるべきか、その根拠となるデータ解析に結びつけることが必要です。 追跡設定の必要は? さらに、解析ツールにおけるデフォルト設定以外のトラッキングに関しては、どのデータを収集すべきかが不明瞭になりがちです。よって、まず目的をはっきりさせ、必要な要素を明確に把握することを心がけています。また、取得できるデータの切り出し方次第で得られるインサイトは異なるため、どのデータがあればどのような推論が可能になるかを意識し、分析スキルの向上を目指しています。

データ・アナリティクス入門

データ分析で意思決定を劇的に改善!

データ分析の重要性は? 「データ分析は意思決定の手段であり、意思決定を効率的に実現するための重要な用途である」と改めて認識しました。特に「整理」し、「比較対象を具体的に」することの重要性を学びました。ものごとを「具体的に」し、「はっきりさせる」ことで、より良い意思決定に役立てることができます。このプロセスを通じて、各要素の性質や構造を細かい点まで明確にすることが肝要です。 目的を持って分析を始めるには? 基本は「目的をもって分析をする」ことです。データから得られる知見があるため、目的を明確にせずデータを加工し始めてしまうことがありましたが、この点は意識して改善していきたいと思います。 BPRを進める秘訣とは? また、BPR(業務プロセス再構築)を進めるには、関係各所のコンセンサスが重要です。関係者が納得し、了承を得られるような説明が重要であり、定量的なデータから重要要素を可視化し、客観的な根拠を元に合意形成までのプロセスを改善することが求められます。 新たな視点を持つために必要なことは? 学んだ内容をもとに実務で実践し、どのような分析・資料が効果的であるかを把握し、習得していきたいと思います。また、自分自身の考え方の癖や偏りを矯正し、柔軟な視点を持てるようにするために、グループディスカッションを通して多くの視点や考え方を吸収していきたいです。

データ・アナリティクス入門

誰もが知る役立つ顧客データ分析の秘訣

分析目的の共有は済んでいる? 分析においては、まず目的をステークホルダーと共有し、判断の基準となる適切な比較対象を設定することが重要です。その後、グラフを用いて直感的に分析結果を把握できるように表現することが求められます。さらに、データが名義尺度、順序尺度、間隔尺度、比例尺度のいずれに該当するかを確認し、適切に扱う必要があります。 顧客データは適切か? 顧客情報の分析を依頼されることはよくあります。この際には、集計の目的をしっかりと理解し、対象となるデータが本当に適切であるかを確認してから分析を行うように心がけています。特に、分析結果が事前の予測から外れることがあります。その原因を探ると、対象外の顧客が対象データに含まれているという事例が多く存在します。 データグルーピングの確認 分析を行う際には、まず分析の目的と分析対象データの中身を事前に確認し、目的に対してデータの対象が適切であるかどうかを確認します。特に、データのグルーピングを行う際には、そのグルーピングが正しいかどうかを作業中でも確認することが重要です。提供されたデータには、抽出条件が不明確であったり、対象外のデータが混じっていたりすることが多いため、グルーピングの条件についてはステークホルダー間で共通認識を持つ必要があります。これを怠ると、分析をやり直すことになる可能性があります。

「本 × 対象」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right