データ・アナリティクス入門

仮説で開く成長の扉

仮説の軸どうする? 仮説を考える際は、一定の軸を持って行うと思考が整理され効率的です。例えば、4P(価格・場所・商品・プロモーション)や3C(顧客・競合・自社)などのフレームワークを活用することで、仮説が一点に偏らず、全体を俯瞰して検討できます。 効果検証のポイントは? また、デジタルマーケティングの効果検証においては、訴求メッセージが狙った対象に適切に伝わっているか、費用対効果が十分か、媒体ごとの違いがあるかなどを意識して仮説を立てることが重要です。ターゲット設定が正確かどうか、その情報が購買に結びついているかという点も、明確な仮説設計を通じて再確認する必要があります。 購買行動の見極めは? さらに、購買データに基づき、どのイベントが発生したときに購買に結びつくのかを意識しながらデータを整理することで、仮説シナリオを構築します。その上で、ターゲットを明確に定め、手元にある各種レポートや分析ツールをもとに、メッセージが本来届くべき相手にしっかり伝わっているかを検証する方法が求められます。

マーケティング入門

受講生が語る狙いの秘訣

ターゲット変更で効果は? 商品自体は変更せずにターゲットを変えるだけで、売上に大きな影響があるという点に驚かされました。困難なプロセスを経る必要があることは想像されますが、結局は顧客自身が気づいていない本当のニーズに気づくことが要となると感じました。 新事業の位置づけは? 新規事業企画においては、二つの軸を使ったマッピングにより、サービスの位置づけが明確になることが分かりました。例えば、観光分野では、どの地域のどのような顧客を対象とするか、また彼らに旅行に来てもらうのか、実際に現地に足を運んでもらうのかで、企画の方向性が大きく異なります。私は、地域の魅力を引き出す役割を金融機関が果たし、同じ考えを持つ仲間と協力するモデルを模索したいため、どこで差別化するかをさらに探求したいと思っています。 失敗から学びが? また、成功事例は非常に参考になりましたが、逆にマーケティングの失敗事例にも関心が向きました。失敗後のリカバリー策や撤退の判断についても、事業運営を学ぶ上で重要な要素であると考えています。

データ・アナリティクス入門

効率的な資料作成で業務改善!

分析を効果的にする方法は? 分析の本質は比較にあります。具体的な要素を整理し、比較対象や基準を設けて、きちんと比較することが重要です。また、条件がそろっていない場合には想像力を働かせて補完することも必要です。 資料作成の時間短縮には? 目的を理解して分析を行うことが大切です。販売計画の部署にいる後輩たちに対して、分析の基本を踏まえたアドバイスをします。例えば、資料にグラフをたくさん載せて資料作成に時間がかかると嘆いている後輩の資料をチェックし、本来の目的は何か、仮説は何かを一つ一つ確認していくことです。 カイゼンプロジェクトの課題解決策 現在進行中のカイゼンプロジェクトでは、「資料作成に時間がかかりすぎている」「この資料作成は本当に必要か」といった課題があります。これらの問題を解決する方法の一つとして、目的をしっかり確認し、仮説を明確にしてから資料を作成するというアプローチを取り入れることが有効です。目的を明確にした上で、仮説を立て、必要な資料を作成する重要性を後輩たちに伝えることが必要です。

データ・アナリティクス入門

仮説を実践!A/Bテスト現場記

目的は明確ですか? まず、A/Bテストを行う際は、目的と仮説を明確にすることが大切です。検証項目をしっかりと設定した上で、テスト対象を1つの要素に絞り、無駄な混乱を避けます。 期間は統一ですか? また、A/Bテストは必ず同じ期間内で同時に実施する必要があります。異なる期間で行ってしまうと、テスト以外の環境要因が影響し、正確な検証が困難になるためです。 仮説の幅広げる工夫は? キャンペーンメールの場合も、基本として要素を一つに絞り、同一期間での同時実施を心がけています。しかし、仮説を明確にするのが難しく、有意差が出にくい状況もあるため、フレームワークを活用して仮説の幅を広げる工夫を行っています。 最適仮説は何ですか? その上で、自分が実施したいキャンペーンにおいては、コンバージョン獲得のため検証すべき仮説を、フレームワークを用いて整理し書き出します。そして、どの仮説が最も効果的なのかを考慮しながらキャンペーンを実行し、結果をもとに検証と改善のサイクルを繰り返すことで成果を追求しています。

データ・アナリティクス入門

データ分析と仮説思考で売上UPを目指す

3Cと4Pをどう活用する? 複数の仮説と網羅的な思考を持つことを学ぶことができました。また、市場、競合、自社(3C)、製品、価格、場所、プロモーション(4P)を意識した仮説構築の重要性も理解しました。データの収集方法については、本当に対象者からのデータなのか、アンケートなのか、口頭なのか、数値なのか、きちんと比較するための収集といった意識も重要だと感じました。 売上向上のための分析法は? 現在、売上が思うように伸びず、分析検証フェーズに入っています。そこで今回学んだ仮説の立て方やデータの取り方を意識しながら、数値を見ていきたいと思います。また、前回のグラフの最適化も考慮に入れつつ、精度の高い分析・検証を行いたいです。 新たな施策提案に必要な視点 さらに、昨年10月から今年6月までの流入数や購入数、広告費などの数値をしっかりと活用し、相関や因果関係を見つけ出し、仮説思考を組み合わせて新しい施策や提案を行いたいと考えています。様々な仮説を一つずつ検証し、網羅的な分析も合わせて行いたいと思います。

データ・アナリティクス入門

プロセス見直しで未来を切り拓く

どうやって原因究明? 原因を特定するためには、分析対象を複数のプロセスに分解し、各段階で明確な問題箇所を探ることが重要です。人の行動に即したプロセス設定を行うと、問題の箇所が特定された後の改善策の検討もスムーズに進むことが分かりました。 なぜ事前に決定すべき? また、What、Where、Why、Howといった基本的なステップと同様に、プロセスの設定も仮説検証に入る前に決め、その内容を関係者間でしっかりとすり合わせる必要があります。たとえば観光客の減少の原因を探る場合、ユーザーがどのように情報を収集し観光地を選んでいるかというプロセスと、現状で手に入っているデータがどの段階で取得されたものかを突き合わせることが求められます。 データ整理の要点は? さらに現状分析においては、最初に幅広いデータを集めることが大切です。各データが持つ性質や項目、定義について周知するとともに、ファネルに沿ってデータの分類や分析を進め、必要なデータの補完を行うといった段階的な準備が成功の鍵となります。

データ・アナリティクス入門

データ分析の基本を押さえる重要性

データ分析の本質とは何か? データ分析は「比較すること」が本質であり、常に「Apple to Apple」と適切なもの同士を比べる重要性を学びました。これを達成するためには、実際の分析に移る前に、分析の目的を明確にし、仮説を立てることが大切であると感じました。 仮説の質をどう改善する? データ分析の前提整理や仮説を立てることには既に意識を持ちつつありますが、仮説の質にはまだ改善の余地があると考えています。データ分析を行った結果、自身の仮説が間違っていることに気づき、仮説を立て直すことが多々あります。経験を重ねることで一定の改善は見られるかもしれませんが、体系的に仮説を立てる方法を学びたいと思っています。 効果的な振り返り方法は? 振り返りをきちんと行い、適切な比較対象が選ばれていたのか、仮説がしっかり立てられていたのか、データ分析の目的が明確に言語化されていたのかを確認することが重要です。脳内でチェックリストを作り、それを基に実践し、反復練習を積むことが必要であると感じています。

マーケティング入門

体験価値再発見の学び旅

体験価値向上の秘訣は? 顧客が自ら利用する商品やサービスの体験価値をいかに向上させるかというテーマは、個人的に非常に面白く、印象深かったです。当初は、マーケティング側の経験や知識、国籍、文化など幅広い要素が関係するため、複雑な事例も存在するのではと一瞬考えました。しかし、実際には、機能面と情緒面の両方から対象のターゲット層にどれだけ見事に訴求できるかがポイントとなり、セグメンテーション、ターゲティング、ポジショニングの前提条件をしっかり創造すれば、その後の解決策をブレークダウンすることで答えが導かれるという点に納得しました。 基本に立ち返るべき? また、日常業務では「体験価値」という言葉をよく使用していますが、本講習の内容と照らし合わせると、捉え方の精度が十分でないのではないかと心配に感じました。どうやら、マーケッターとしての視点よりも、売り込み寄りになってしまっている印象があります。自分自身を含め、組織全体で基本に立ち返り、行動の中身をアップデートしていきたいと感じています。

マーケティング入門

顧客目線で気づいた本当の魅力

マーケティングの本質は? マーケティングという言葉は、人によって使い方や意味合いが異なるため、注意が必要だと改めて感じました。また、効果的なアピールとは単に情報を伝えるだけではなく、相手がその魅力を感じることが重要だと思います。ヒット商品に共通するのは、対象となる層や商品の特徴を踏まえた広告戦略であり、消費者がしっかりと魅力を感じなければ、購入に至らないという点です。 顧客視点の見直しは? 売上目標を意識するあまり、売ることだけに視点が偏りがちだと気づかされました。そのため、一度立ち止まり、顧客側の視点から考えることの大切さを再認識しています。また、顧客視点で考えるために必要な情報や知識を整理し、営業チームやパートナー企業との連携で常に情報をアップデートすることの重要性も感じました。今後はこれらを意識して取り組んでいきたいです。 購入決断の理由は? さらに、人がどのような要因で購入決断に至るのか、さまざまな要因やきっかけについて、より深く学んでいきたいと考えています。

データ・アナリティクス入門

分けて比べる実践の記録

手法の意図は何? 今回のデータ分析では、まず「分けて比べる」という手法を意識し、対象や基準を明確に設定して検証しています。データ分析の目的—つまり、何のために分析を行い、どのような成果を期待するのか—をはっきりさせた上で、ゴールや仮説、今後の取り組みイメージを具体的に描くよう努めています。また、目の前にあるデータのみを頼りにせず、生存者バイアスに十分注意しながら分析を進めています。 売上向上の秘訣は? 購入者の分析とパートナー企業の売上分析の双方について、各々の良い点と改善すべき点を明確に整理することで、パートナー企業全体の売上向上に寄与するマクロサポートへと繋げたいと考えています。さらに、サンプルデータや本講座を通してデータ分析の実践回数を積み重ねることで、これまでの経験に加え新たなプロジェクトに活かせる知識を身につけたいと思います。過去に他のプロジェクトで培った分析経験を再検証し、今後のプロジェクトに向けたデータ収集や分析手法の向上を図っていく所存です。

データ・アナリティクス入門

キャンペーンを成功に導く効果検証術

キャンペーン効果をどう活かす? キャンペーンの効果検証に生かすことができると思います。これまで効果検証を次の施策や会社の計画に反映できていないことが課題でしたが、キャンペーンの結果を本講座の分析法で分析し、そこから見えてくる考察を基に新しい取り組みを提示したいと思います。 商品性の比較はなぜ必要? また、現在部署で新規事業の検討を行っております。その商品性の検討に際して、他社商品を比較することが必要です。分析を行うことで、商品性に取り込みたい要素や難しい要素を明らかにすることができると思います。 課題解決に向けた具体策は? これらの課題に対し、次のことを行っていきたいです。 - WEEK1で学んだ内容の共有 - 分析対象となるものの選定 - 比較対象のピックアップ WEEK1で学んだことは既にチームメンバーに共有しており、メンバー全員が納得した内容でしたので、今後も新たな気づきを共有し、実践の場で活用していきたいと思います。

データ・アナリティクス入門

分析が楽しくなる仮説の立て方と実践例

適切な比較対象を選定するには? 分析の本質は比較であり、適切な比較対象を選定することが重要だと学びました。また、問題解決には、「What, Where, Why, How」の4つのステップがあることも理解しました。今後は、ただやみくもに分析をするのではなく、当たり前ではありますが、仮説をきちんと立ててから実施することを心がけていきたいと思います。 秋の実証実験で何を活かすか? 秋から始まる実証実験の結果を、今回学んだ内容を活かして分析していきます。特にアンケート設計を実施する必要があるため、事前に仮説を立て、実証実験で得たいデータが得られるような設計にしていこうと思います。 アンケート設計の考慮点は? 9月中にはアンケート設計を行います。実証の目的や今後に繋げていくために欲しい情報などをよく考えた上で設計を行うことを心がけます。また、今回学んだ知識を忘れないためにも、業務の中で意識的に使用していくことを心がけていきたいと思います。

「本 × 対象」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right