データ・アナリティクス入門

問題解決の視点を広げる大切さ

プロセスの問題をどう特定する? プロセスの問題を明確にするためには、各プロセスを分解してそれぞれの率などを分析し、どこに問題があるのかを確認することが有効です。また、仮説を考える際には内部要因と外部要因の両方を考慮することで、視野を広げることができます。 A/Bテストの成功法は? A/Bテストを行う際は、一つずつ要素を変えて精査することが重要です。時期的な要因に左右されないためにも、同じ期間に同様のターゲットに対してランダムに行うのが良いでしょう。複数の要素をテストしたい場合は、別の手法を検討する必要があります。 WEB広告でのA/Bテスト活用法 WEB広告においてもA/Bテストを活用し、広告の精度を高める努力を続けますが、時期や施策ごとに単に更新するだけではなく、施策展開から販売までのプロセスを分解し、どこに業務プロセスの問題があるかを分析することが重要です。 効果的な問題解決の取り組み方 解決策を決め打ちするのではなく、「What」「Where」「Why」「How」の各プロセスを意識的に取り組むことが求められます。問題解決のプロセスを意識的に取り組み、定着させることが必要です。 チームで知識を共有するには? また、WEEK5の内容をチーム内に共有し、良い切り口を持てるように常にアンテナを張り、これと思ったことを書き留めることも大切です。年末に向けて打ち出す販促施策においても、A/Bテストを試みたいと思います。

データ・アナリティクス入門

仮説で見つける新たな視界

どうして複数仮説が必要? 結論を先に決めてしまわず、はじめから複数の仮説を立てることが大切です。それぞれの仮説に網羅性を持たせ、偏りのない検証を心がける必要があります。 どのフレームが使える? 仮説を立てる際には、3Cや4Pなどのマーケティングフレームワークを活用することが有効です。他のビジネスフレームワークも使いやすさを考慮して試すと良いでしょう。さらに、仮説を検証するためのデータが恣意的になっていないか注意することが重要です。 実績の要因は何? 実績に対して要因を探る際、ベテランの経験則に基づく仮説が採用されやすい傾向があります。しかし、対案を立案しデータによる検証を実施することで、本当にその仮説が正しいのか確認する必要があります。また、仮説を証明するためだけのデータに依拠しすぎないよう注意してください。 急な依頼はどう考える? たとえば、上司から急遽、ある実績に対して1つの仮説だけを検証するよう依頼されたケースがありました。その際、他の分析結果ではその仮説の寄与度が低いことが示されており、また分析結果が活かせるのは1年後という説明から、急いで1つの仮説だけを検証する必要はないと理解してもらいました。 理想と現実は? このように、上司がある実績について理想的な状況を望んでいる場合でも、実際には複数の説明変数が影響していると考えられます。したがって、必要なデータを揃えて十分な分析・検証を行うことが求められます。

データ・アナリティクス入門

数字に隠れた学びのヒント

全体の流れは? データの分析にあたっては、「what」「where」「why」「how」を意識し、細部に目を向けながら全体の流れを把握することが大切だと感じました。平均値を確認する際にはばらつきも捉え、代表値を選ぶときには元データの傾向を十分に理解することが、全体像(森)を見渡す鍵になると実感しました。 仮説検証の進め方は? また、データから得られた示唆をもとに、さらに分解して仮説検証を進めるプロセスが重要であると感じています。単に数字を追うのではなく、その裏にある人々の行動や意図をイメージすることで、より深い理解へとつながると気づかされました。 アンケート設計はどう? 加えて、アンケート設計において「どちらでもない」を選ばせない工夫が、回答者の意見をより明確に捉えるために有効であるという点も良い気づきでした。こうした取り組みは、得られる情報の質を高め、後の分析においても大いに役立つと思います。 EC分析の鍵は? さらに、ECにおける顧客、商品、売上といった各視点のデータ分析に、この学びを応用していきたいと感じています。実習課題では前年との比較を行い、特定の商品カテゴリでの売上低下など、数多くの視点から分析する方法を学びました。昨年と今年の売上推移、売れ筋商品のトレンド、併せ買いの傾向、そして商品における顧客属性の違いなどを比較することで、売上が低下した場合のリカバリー対策の策定にも役立つ視点を得ることができました。

データ・アナリティクス入門

みんなで目指す納得評価術

評価基準はどう決める? 複数の案を選ぶ際、定量的な評価を行う方法はチーム内の納得感を高めるために有効です。ただし、評価の重みづけが主観的にならないよう注意したいと感じました。 テスト実施の秘訣は? A/Bテストでは、変更する部分を限定・絞ることが重要です。どの部分が効果的だったかを明確に判断できるよう、実施時期や対象ユーザのセグメントを統一し、他の要因が分析に影響しないようにする点にも気をつける必要があります。 現状把握はできてる? まずは現状をしっかりと確認し、当たり前の事実であっても言語化してチーム全体で共通認識を持つことが大切です。その上で、事象の原因を特定し、解決策の検討に移るステップが効果的だと感じます。 アンケート設計はどう? また、仮説をもとにユーザアンケートをデザインする際は、因数分解やクロス集計ができるよう意識することがポイントです。フレームワークを活用して実際に分析し、わかりやすく言語化していくプロセスも有益です。 レポート共有はどう? アンケートのデザインにおいては、考え方や方針をチーム全体で共有し、どのような分析が可能か、またはどの分析を行いたいかを仮のレポートとして作成してみると良いと感じました。 理想と現状の対比は? 最後に、あるべき姿と現状を整理し、適切なフレームワークを見つけて習得することで、資料として他者に教えやすい形にまとめられる点にも大きな意義を見出しました。

データ・アナリティクス入門

仮説を多角的に検証する重要性に気付いた日

仮説検証におけるフレームワークの役割 仮説を立てるための考え方について学びました。特に、3Cや4Pのフレームワークは、以前大学で学んだものの、実際の仕事では体系的に使用していませんでした。しかし、これらを意識することで仮説検証のための情報整理に役立つと感じました。 仮説A以外のデータも探すべき? また、自分の仮説に都合の良いデータだけでなく、仮説A以外の可能性を否定するデータも収集することの重要性に気付きました。実務ではスピードが求められ、自分の仮説を証明するデータを集めがちだったので、この学びは大変有益でした。これからは、直接的なデータだけでなく、複数の切り口からデータを検証するよう心がけたいと思います。 具体的には以下の点に活用できると考えています: - **企画・施策立案** - **クライアントへの提案内容の精査**:クライアントの立場に立って仮説を複数持つことで、より効果的な提案が可能です。 - **ユーザーの動向分析**:例えば、使用率が下がっている場合の原因検証などに使えそうです。 - **目標の設定**:年間目標の設定や到達見込みの予測に活用できます。 行動前に何が大切? 行動の前に、もっと仮説の検証やデータの収集に時間をかけることが重要だと感じました。今後は、「データを分析して仮説を立てる」という従来の手順から、「仮説を立ててデータを分析して検証する」という手順に意識を変えていきたいと思います。

データ・アナリティクス入門

現場で磨く仮説思考の実践

具体的演習の魅力は? 総合演習の課題解決は非常に具体的で、これまでの演習と比べると、より深い検討が求められる良い機会となりました。 フレームワーク使用法は? 仮説を考えるプロセスでは、思考の幅を広げるためにフレームワークの活用や対概念の取り入れ方が提示されました。しかし、現時点ではフレームワークの使いこなしが十分ではないと感じ、今後の日々の活動の中で意識的に取り入れていきたいと思います。 A/Bテストの効果は? また、A/Bテストを活用して早期にアクションを起こすことで、得られたデータをもとに仮説をさらに精緻化する取り組みも印象的でした。Web関連の利用場面では活用しやすい一方、現業務にすぐ生かすことは難しいと感じたため、二つの選択肢の中から比較しながら適した選択を見つけるアプローチを取り入れたいです。 問題解決の流れは? 問題解決については、問題に至るまでの流れをプロセスに分解し、どの段階に原因があるのかを明らかにする手法が有効だと実感しました。解決策を検討する際にも、複数の選択肢を洗い出し、根拠をもって絞り込むことの重要性が伝わってきました。 現場実行のコツは? 現在の業務では、大規模なデータ分析による示唆を提示するよりも、現場に近いところですぐに施策を実行することが求められていますが、仮説思考に基づいて複数の仮説を立てた上で行動に移すプロセスを意識的に実践していきたいと考えています。

データ・アナリティクス入門

問題解決力を向上させる仮説の立て方

仮説設定の重要性とは? 問題解決プロセスにおける「why」(原因分析・追究)や仮説について学びました。特に重要なポイントは次の2点です。 1. 仮説は複数立てること: - 「Aである」だけでなく、「Bである可能性」や「Aではない可能性」など、さまざまな仮説を立てて決め打ちしないこと。 データをどう活用する? 2. 仮説同士に網羅性を持たせること: - データを評価する際、「何を見れば良いのか」「何と何を比較すれば良いか」「意図をもって何をみるか」といった視点を持つことが重要です。 - 仮説を確定させるためのデータだけでなく、「比較するための」データ収集も忘れてはいけません。 - 関連性のあるデータをより多く集めて分析することで、意思決定の精度が高まります。 進捗管理にどう活かす? この学びは、個人の事案対応力(受付件数と解決件数)や進捗が早い人・遅い人の原因追究(最終的には対策まで)に活用できそうです。日々の進捗管理と並行して、個人の適正業務量や対応方法の評価を行い、現行の運営が正しいかを検証するのに役立ちます。 業務適正の客観評価が必要? 現状を定量分析し、意図的に仮説を持って原因追究を深めることで、より良い業務推進力を発揮させるための手立てを見つけたいと考えています。担当者個人の特性を一旦置いて、より客観的に業務の適正さを評価することが必要だと感じました。

アカウンティング入門

数字が語る経営の物語

資金の使い道は? B/Sの左側がお金の使い道、右側が調達方法であることに改めて気づかされました。同じ業界のカフェでも、コンセプトの違いによって資金の使い方や調達方法が全く異なる場合がある点がとても興味深かったです。 資産と負債の違いは? また、左側の「資産」と右側上段の「負債」が流動と固定に分かれており、1年以内と1年を超えることで区別される理由が理解できたことで、これまで以上に数字が明確に見えるようになりました。 無借金経営のリスクは? さらに、あるカフェの事例を通して、無借金経営を続けることのリスクについて考える機会となりました。無借金経営=健全な経営と一概には言えないのではないかという仮説が立ち、経営の安定性について再考する良いきっかけとなりました。 決算月の振り返りは? 今月は決算月ということもあり、経理がまとめた過去3年分のB/Sを見比べながら、今年度の振り返りを行いたいと考えています。まずは自分自身で、そしてメンバーと共に数字の変化を確認し、資金調達とお金の使い道のバランスについて、前年度からの変動を比較・検討します。 数字変化の意図は? その上で、数字に現れた変化が意図的なものなのか、あるいは外的要因によるものなのかを精査し、外的要因で不本意な数字が出た場合には、改善策を具体的に見える化してメンバーと共有し、会社全体の成長に繋げていきたいと考えています。

データ・アナリティクス入門

ひらめきと検証、学びのワクワク旅

仮説とは何だろう? 仮説とは、ある論点に対する仮の答えや、まだ十分に理解できていないことに対する仮の答えのことです。目的に応じて、結論の仮説と、具体的な問題解決を推進するためのプロセスに沿った問題解決の仮説に分類されます。 なぜ複数を検討する? 仮説を考える際は、まず複数の仮説を立て、ひとつに固執しないことが重要です。異なる視点から複数の切り口を用意することで、網羅性のある考察が可能となります。 どの要素を比べる? また、検証の際には、どの要素を比較するのかという意図を明確にしながら進めることが肝心です。単に何となく比較するのではなく、仮説に対する反論に対応できるよう、比較対象となるデータを計画的に収集してください。データ収集時には、誰に、どのように質問するかが回答結果に影響する点にも留意する必要があります。 どうデータを公平に扱う? さらに、検証データを集める際は、自身の都合の良いデータだけに依存せず、フラットな気持ちで客観的にデータを扱いましょう。説明資料を作成する際には、想定される反論やコメントにも対応できるよう、十分な根拠となるデータを盛り込むことが求められます。 検証習慣はどうある? 日頃から、仮説とそれを裏付けるために必要なデータの関係性を意識し、どのようなデータがあれば検証に役立つのかをセットで考えておく習慣を身につけることが、効果的な問題解決に繋がるでしょう。

データ・アナリティクス入門

学びとデータのワクワク発見

データ集約はどう行う? 今週は、データの見方を学びました。まず、データを数値に集約する方法として、代表値と散らばりの考え方を理解しました。代表値には平均、荷重平均、幾何平均、中央値などがあり、よく使われる平均値は外れ値に弱いことから、場合によっては中央値が用いられることもあると知りました。また、状況に応じて数値に重みを加える荷重平均や、売上の変化率などに使われる幾何平均がある点も印象的でした。 標準偏差の意味は? 次に、データの散らばりを示す標準偏差について学びました。標準偏差は、平均値からのばらつきを表し、その値が大きいとデータが広く散らばり、小さいと平均値近くに集まっていることを意味します。 分析方法をどう考える? さらに、集約されたデータを分析する際のアプローチについても考えました。一つは、特徴的な箇所に着目する方法、もう一つはデータ間の比較を通じて差異を見る方法です。いずれの方法でも、グラフを見る前に仮説を立て、そのギャップについて深掘りすることが、良い分析につながると感じました。 全体把握の重要性は? 最後に、仕事上でデータを扱う際、自分の仮説の確認だけに偏らず、まずは代表値やばらつきなどの基本的な数値を俯瞰し、対象のデータ群全体を把握することの大切さを再認識しました。その上で、加工されたデータを見ることで、より客観的かつストーリーとしてデータを理解できると考えています。

データ・アナリティクス入門

平均に惑わされない、本質を探る

平均値だけで信頼できる? 平均値だけに頼ると、誤った仮説に導かれる可能性があると学びました。今後、データに向き合う際は、代表値だけでなく散らばりにも十分に気を配ることを心がけます。 どうやって指標を使い分ける? 具体的には、単純平均、加重平均、幾何平均、中央値といった指標を意識して使い分け、状況に適した分析を行いたいと考えています。 SNS分析はどう進める? また、SNSコンテンツの制作分析においては、各カテゴリによって、反応が良い投稿でもインプレッションが伸びにくい場合や、逆に反応が少なくともインプレッションが増えるケースが存在することに気が付きました。このような現状から、再現性を持ったPDCAサイクルの実現が課題であると感じます。 どの手法で再現性を高める? そこで、各コンテンツカテゴリについて平均インプレッションとユーザーの反応(例えば、いいね数など)の相関や散らばりを分析することで、再現性の高い投稿カテゴリを見つけ出せる可能性があると考えています。 具体的な分析アプローチは? 具体的なアプローチとしては、まずコンテンツカテゴリの整理を行い、外れ値を除いた各カテゴリごとの平均インプレッションを調査します。次に、平均インプレッションとユーザーの反応数の相関関係や、データの散らばりについても検証します。特に、散らばりが小さいカテゴリは、再現性を高めやすいと捉えています。

データ・アナリティクス入門

迷走も学びに変える仮説実践

集客の見直しはどう? 実践において、当初「集客」を問題と考えていたものの、活動を進める過程で「集客」を見失い、結果として問題の本質に気づくのが遅れてしまいました。この経験から、目的を常に意識しながら進める重要性を再確認しました。 仮説の多角的検証は? また、動画講義では仮説思考の実践方法について学びました。複数の仮説を網羅的に検討し、一つだけに頼るのではなく、多角的な視点から論点を捉える必要があると実感しました。反論を受け入れる姿勢や、都合の良いデータ集めを避けることで、仮説が誤っている場合にも柔軟に見直すことができるという点に大きな気づきがありました。 仮説の役割は何? さらに、仮説の種類やその役割についても理解を深めました。論点に対して仮の答えを示すコミュニケーション仮説と、問題を解決するための問題解決仮説といった区分や、失敗の原因究明といった過去の事例、あるいは未来の展望に基づく仮説があることを学びました。これらの仮説に検証計画をセットにして進めることで、説得力が増すことを実感しました。 学びと実践の道は? 今後は、複数かつ網羅的な視点で仮説を立てるため、各種フレームワーク(例:4Pや3Cなど)を積極的に学び、状況に応じて最適なものを選ぶ意識を持ちたいと思います。同時に、仮説と検証をセットにした提案を自分自身だけでなく、チーム全体で実践することが重要だと考えました。

「良い × 仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right