データ・アナリティクス入門

データ分析とマーケティングが結ぶ新たな気づき

すべての学びは繋がる? 6週間の講義を振り返り、最も印象的だった学びは「すべての学びは結び付いている」ということでした。もともと興味を持っていた分析手法やその評価方法には多くの新しい発見があり、非常に刺激的でした。しかし、分析に基づいて仮説を立て、それを生かすためにはマーケティングの知識が必要だということに気付きました。過去に学んだことと今学んでいることがつながり、新しい視点が得られたこの体験は非常に刺激的でした。 マーケティングとデータ分析の相乗効果 知ったつもりでいたマーケティングに関するフレームワークをデータ分析で活用することにより、学びが独立したものではなく、結び付けることで価値が生まれるのだということを実感しました。この経験が一番の収穫だったと思います。 異動後の目標と実践 講座の受講期間中に営業部門から希望する企画部門への異動が実現しました。異動までにデータ分析やマーケティングに関する学び直しを行いたいと思っています。講座で学んだデータ分析の基礎的な手法は、現在の部署でも十分活用できます。まずは今の部署で可能な分析を行い、学びを実践に移したいと考えています。まずは営業部門の販売実績から現状を把握し、マーケティングのフレームワークを活用して今後取るべき打ち手について考え、同僚と意見を共有したいと思います。 新しい提案とその影響 異動するまでに今回学んだデータ分析手法を用いて、営業部門の現状分析やそれに基づいた仮説の立案を実施したいと考えています。現部署では経験や勘を重視する風潮があり、それ以外の判断基準がない状況です。たとえ私の提案が採用されなくても、新しい考え方の実例を示すことで変化のきっかけとなれば良いと思っています。そしてこの経験、特に反省点を次の部署で生かし、新しい環境でも様々なことに挑戦してみたいと思います。

データ・アナリティクス入門

データ分析で実現する未来の可能性

比較の重要性とは? データ分析において、比較は極めて重要な要素です。要素を整理し、性質や構造を明確にすることで、なぜ「良い」あるいは「悪い」と判断されるのかを理解することができます。判断するためには、特定の基準や他の対象との比較が必要であり、比較を通じて初めてデータに意味が生まれます。 目標設定の重要性 分析には目的や仮説の明確な設定が不可欠です。分析の目的が曖昧であったり、途中でぶれてしまうと、都合の良いデータばかりを使う危険性が生じます。また、不要な分析に時間をかけてしまうリスクもあります。したがって、「何を得たいのか」という分析の目的と、それに必要なデータの範囲をしっかりと見極めることが必要です。 データの特性と可視化 データは質的データと量的データに分類され、さらにそれぞれ名義尺度・順序尺度または比例尺度・間隔尺度に分解できます。それぞれのデータの特徴を理解し、注意しながら扱うことが重要です。異なるデータを組み合わせることで、ひとつのデータだけでは見えてこなかった新しい情報を得ることが可能です。これらを効果的に可視化するために、グラフを利用しますが、グラフには適した見せ方があります。例えば、割合を示すには円グラフが、絶対値の大小を比較するには棒グラフが適しています。 新プロダクトの市場分析 現在、私は新しいプロダクトのリリースによって市場規模がどれだけ拡大するかについての分析を進めています。分析結果を基にした組織全体でのコンセンサス形成が不可欠であり、そのためには分析結果をわかりやすく可視化することが重要です。講義で学んだ内容をもとに、収集したデータをEXCELで整理し、グラフで可視化する予定です。どのデータをどのグラフで可視化するかは、講義の知識を活用しつつ、基準の設定も意識しながら判断しています。

データ・アナリティクス入門

問題解決のプロセスで成果を出す方法

「Why」と「How」の探求は? 問題解決の4つのプロセスのうち、最後の2つである「Why(なぜ)」と「How(どのように)」について考えました。問題の原因を明らかにするために、プロセスを分解し、どの段階に問題があるのかを特定します。そして、解決策を検討する際には、複数の選択肢を洗い出し、それぞれの根拠を持って選定します。 学びをどう生かすか? これまでの学習でも、都合の良いデータばかりを集めないことや、仮説思考で柔軟に考えることの重要性を学んできました。同様に、「How」についても決め打ちせず、複数の選択肢を洗い出し、判断基準を設け、重要度で比較して解決策を選ぶようにします。 A/Bテストの手法とは? また、A/Bテストについても学びました。複数の案を条件を揃えて比較し、評価する手法です。複数の案を実際に試し、反応を確認しながら仮説検証を繰り返して評価します。ある事例では、スピードが重要で3ヶ月も待てないため、同時にランダム表示を選択しましたが、条件を揃える理由に納得しました。 黒字化への挑戦は成功? ちょうど今週、この学びを生かす機会がありました。自部門の数字が黒字にならない原因を考える場面があったのです。これは長年の問題で、まだ解決に至っていません。今週の学びを基に、原因や解決案を決め打ちせず、プロセスに分解し、複数の仮説を立て、根拠となるデータを示しながら解決策に向けた対策を考えていきたいと思います。 残業時間の原因は何か? 最後に、自身の月々の残業がなぜ80時間に達してしまうのかについても、4つのプロセスを用いて考えてみることにします。さらに、Q2で記載した問題の原因について、ある程度仮説を立てています。それらの仮説が正しいかどうか、データを用いて分析することを早速始めてみます。

クリティカルシンキング入門

5つの視点で学びを深める週にしてみよう

総復習で得た学びとは? 今週の講座では、これまで学んだ点を総復習する機会がありました。一つの点にばかり気を取られていると、他の学びを活かせないことがあるため、講座全体をしっかりと復習することで理解を深めていきます。 問題解決のための仮説構築 例えば、施策立案前の仮説構築では、イシューを特定し、イシュー中心で施策を進行します。また、施策の効果検証では、解決すべき問いを残して効果検証までやり切り、どんなリテラシーの人にも伝わりやすい見せ方(視覚化)を意識します。上司や同僚、取引先との情報共有や報告の際は、イシューを共有し、関係者間で問題の認識を統一することが重要です。ポイントを理解してもらえるような伝え方を心掛けます。 状況を整理し問いを立てる 「問い」を立てて取り組むことは何事にも重要です。状況を分解・整理して問いを定め、適切な解決策を導き出します。また、問いだけでなくチームメンバーの役割を明確にすることで、どのような視点での協力を期待しているのか理解しやすくなります。 伝えたいことを正確に伝えるには? 自分が伝えたいことが正確に伝わるコミュニケーションを心掛けることも必要です。相手のリテラシーに合わせた言葉選びや、相手が時間をかけずに理解しやすい見せ方(視覚化)を意識した資料作り、相手が何を期待し、何をすれば良いのかがわかりやすいコミュニケーションが求められます。意見を伝えるだけでなく、傾聴力も大切です。 クリティカルシンキングの磨き方 業務の中でクリティカルシンキングの反復トレーニングを行うことも重要です。具体と抽象、主観と客観を行き来しながら物事を捉えるよう努めます。他者の意見を聞いたり、自身の考えをフィードバックしてもらうことで、視点、視野、視座の三つを広げることを意識します。

データ・アナリティクス入門

挑むデータ、拓く未来

データで信頼築ける? データが少ない状況では、医者の診断も検討はずれになりがちです。そのため、血液検査や各種データの収集、統計や原則に基づいた仮説の設定、そして一定期間の経過観察と検証を重ねることが求められます。こうした一連のプロセスは、日常生活の延長線上にある行為とも言え、直感に頼るのではなく、データを根拠とした理論的な意思決定に楽しさとやりがいを感じています。 どう伝えるのが良い? 日本の人口のごく一部がクリスチャンであり、その中でも特定の宗教団体に所属する会員はさらに限られています。残りの多くの人々に対して、回復された福音をどのように伝えるかという大きな課題に取り組んでいます。SNSやインターネット、テレビ、新聞、雑誌、口コミ、広告トラック、アドバルーンなど、さまざまなメディアを駆使し、目標達成の手法を模索中です。 伝わりにくいのは? もし、ひとりの会員が教会のことを知らない多数の人々に対して、漏れなく情報を伝えられたなら、その印象は全体に広がるでしょう。しかし、伝達だけではなく、クリック率やコンバージョン率といった指標を通じて、実際に人々の生活に喜びをもたらす変化を実現するまでには、段階的にその数が絞られていくのも事実です。それでも、たとえひとりのためであっても、自分のデータ分析が役に立つのなら、人生を賭ける覚悟で取り組むべきだと感じています。この講座と出会い、周囲から良い影響を受けられていることに感謝しています。 成果の極意は何? 毎週、成果を最大化するためのアイデアを考える時間を意識的に持ちたいと思います。インスピレーションが降りることを期待しながら、今週はABテストを実施してみようと考えています。データと真摯に向き合いながら、突破口を見つけ、進むべき道を探し続けたいです。

データ・アナリティクス入門

データで見える真実: 分析の新たな視点へ

重要な三つのポイントとは? 私が特に重要と感じた点について整理すると、次の三つが挙げられます。 まず、「分析は比較なり」という点です。物事を細分化して整理し、各要素の性質や構造をはっきりさせることが求められます。また、具体的な比較対象や基準を設けることで、状態を把握しやすくなり、意思決定もしやすくなります。 データ分析の目的確認はなぜ大事? 次に、「データ分析を始める前に目的の確認をすること」の重要性です。仮説を立てて取り組むことが強調され、目的と照らし合わせながら比較することで、目に見えない情報を想像しながらの分析が可能になります。 最後に、「Apple to Appleになっているか」の確認が重要です。不適切な比較対象を避け、意思決定に役立つ分析を行うよう心がけなければなりません。 グラフの可視化はどう変わる? また、グラフの可視化においても学びがありました。データの種類に応じた加工法やグラフの見せ方を学び、「どんなデータを」「どう加工するとわかりやすいか」をより意識する必要があります。これを企画ごとのデータ分析に役立て、反響率や成約率、属性やエリアなど、比較すべき視点が今まで以上にあることに気づかされました。 実践にどう活かすか? さらに、作成するグラフの可視化方法についても実践していきたいと感じました。分析の本質をチーム内で共有し、分析に取り組む前の目的の明確化を意識することが必要です。そのうえで、これまで出してきた分析指標が正しい比較だったのか、新しい視点はないかを見直し、より良い意思決定に役立つものにしていきたいと思います。 企画運営の課題を定量分析によって発見し、根拠のある提案ができるようにするために、まずは学びを実践していくことが大切だと感じました。

クリティカルシンキング入門

問いを重ねて、思考の旅を楽しむ

どうして問いに注目? 総合学習における南守島での観光客増加に関する町長の問いは、経営に通じる面があり、その重要性を改めて認識する良い機会となりました。この学びを通じて、Week1からの内容を振り返ることができました。また、「問いを意識し続ける」ことは、日常生活にも応用可能であり、思考を鍛えるトレーニングになると考えています。例えば、立地条件が悪そうに見える近所のコンビニが繁盛している事例などでは、経営面と利用者の視点から問いを重ねることで、仮説による答えが導き出せるのではないでしょうか。問いを続けることで、具体的な事例と抽象的な概念を行き来する思考の旅を楽しめるようになりたいと感じています。 戦略はどう検討する? 事業戦略を含む経営企画の担当として、今回の観光客増加の課題と対策を考えることは自社の事業課題の分析や洗い出しに通じており、今後の事業計画にも役立てたいと思います。また、社会人経験が20年を超えた今、慣れや思考の停止を感じることもありますが、「そもそも、どうなのか?」という視点を常に持つことで、業務改善に繋げていきたいです。業務においては必ず相手が存在するため、相手を意識した問いを持ち続け、答えを見出す姿勢を大切にしたいと考えています。 思考スキルはどう磨く? クリティカルシンキングは基本的な思考法として、仕事だけでなく日常生活にも活用していきたいと思います。近所のコンビニやスーパーの経営状況、報道される事件の背景などについて考えることは、思考の訓練になると考えており、常に「問い」を持ち続けて思考レベルを向上させたいと思っています。また、思考のスキルだけでなく、資料作成や文章作成のスキルも重要であることを改めて認識しました。今後はこれらの質もさらに磨いていきたいです。

クリティカルシンキング入門

問いがひらく学びの扉

議論開始の問いは? 議論を始めるときは、まず「今向き合うべき問い」を明確に特定し、参加者全員で共有することが大切だと実感しました。漠然と議論を進めたり、やむを得ずアクションに移すだけでは、効率が悪くストレスもかかるため、様々な視点から問いを捉え、抜け漏れや重複がないかを意識する必要があると学びました。 伝わる言葉の工夫は? また、相手に伝わる言語化と可視化の手法にも大きな意義を感じました。主語を省略せず、相手が持っている情報や求めている内容、そして最終的なゴールを考慮した構成にすることで、より分かりやすいコミュニケーションが可能になります。さらに、データを分解する際には一歩進んだ考察や、グラフや強調表現を用いた視覚的な工夫が、情報を容易に理解してもらう鍵となります。 実践で感じる難しさは? また、インプットした知識を実際の仕事に活かし、アウトプットし、フィードバックを得た上で振り返る一連のプロセスが思った以上に難しいと感じました。慣れ親しんだ頭の使い方に頼ってしまうため、言語化して成果を示すことに対する抵抗感もありますが、まずは身近な相手に発信することで自信をつけ、学びを定着させることが必要だと強く思います。 マネジメントの見直しは? これらの学びは、マネジメントや組織課題に対する施策立案の現場で活かすことができると考えています。マネジメントにおいては、相手ごとに適切な情報提供の構成を工夫し、目的とゴールを初めに明確にすることで、議論に一貫性を持たせることが可能です。組織課題の解決に取り組む際も、まず「今向き合うべき問い」を明確にし、共通認識のもとで問題を分解・仮説立てし、複数の根拠をもって主張することが、効率の良い課題解決につながると感じています。

データ・アナリティクス入門

動きながら考える仮説の極意

どんな仮説が必要? 仮説とは「ある論点に対する仮の答え」であり、答えである以上、いい加減な内容では通用しないと実感しました。どのような仮説を立てるかが極めて重要であり、良い仮説を構築する方法について疑問が生じました。 原因をどう究明? また、課題解決の仮説は、単に「どこに問題があるか」と考えるだけでなく、問題箇所が特定できた場合でも、その原因を十分に掘り下げるプロセスが不可欠であると感じました。徹底した分析によって、問題の本質に迫ることが大切だと思います。 反論はどう除外? さらに、仮説はそれ自体以外の反論を排除しながら構築すべきだと考えます。まずは対象となる事象(What)を明確にしたうえで、問題の所在(Where)を適切に分解し、抜け漏れのない形で仮説を立てないと、説得力を持った論点整理は難しいのではないかと感じました。 対応をどう構築? 加えて、ある事象に対して対応時間が長期化しているという問題を例に考えると、What自体は把握できているものの、問題の具体的な所在(Where)に対する仮説が立てられていない現状があります。問題点をMECEに分解しながら仮説を検証するためにも、現場の実情を踏まえてまずは動いてみるというアプローチも一つの方法ではないかと思います。 試行で見える答え? こうした見解から、動きながら仮説を立ててみる方法が有効なのか、またその過程で優れたインタビューの実施にも注力する必要があるのではないかと考えています。同じように、受講している皆さんもどこに問題があるのか(Where)の見極めに悩まれているのではないでしょうか。まずは実際に動きながら仮説を試してみることが、より良い解決策へとつながると感じました。

データ・アナリティクス入門

仮説で挑む学びの冒険

仮説はどこから始まる? ■仮説を立てる 仮説を立てる際には、まず3C分析や4P分析などのフレームワークを活用し、幅広い視点で考えることが効果的です。複数の仮説を挙げ、これらの中から絞り込むことで、反論や別の可能性を排除できるように意識することが大切です。また、意図的に役割や網羅性を持たせることもポイントとなります。 検証はどう行う? ■仮説を検証する 仮説を検証する際は、比較の指標として平均や標準偏差などのデータ評価の手法を選ぶとよいでしょう。加えて、データ収集の際には「誰に」「どのように聞くか」に十分注意し、有力な仮説の検証に加えて、他の仮説が成立しないことを示すデータも集める必要があります。 仮説の違いは何? ■仮説の分類と意義 仮説には「結論の仮説」と「問題の仮説」の2種類があります。複数の仮説を立てることで、検証マインドや説得力が向上し、関心や問題意識が高まるだけでなく、物事のスピードや行動の精度も向上することが期待されます。 最初は何から進める? 仮説が求められた場合、最初にどこから取り組めばよいかわからなくなることがありますが、その際はフレームワークを活用するのが良いと考えています。実際、過去には「クロスセルで自社商品と相性のよい商品は何か?」や「価格変更による影響」を検討した経験があります。似たような課題に対しても、あらゆる仮説を立てたうえでロジックツリーに当てはめ、優先度を決めながら、時間をかけて分析すべき事項を整理していきたいと思います。 有力仮説はどう選ぶ? どのように客観的な仮説を複数挙げるか、また有力な仮説に偏りが生じた場合にはどのように対応すればよいかについて、具体的な方法を検討したいと考えています。

データ・アナリティクス入門

比較で浮かび上がる数値の真実

データ分析の意味は? データ分析とは、目の前にある数値だけを見るのではなく、比較を通して全体像を把握する作業です。見えていない情報にも仮説を立て、その仮説を検証していくことが重要だと感じました。また、分析対象の情報が本当に分析に適しているか、すなわち同じ条件で比較ができるかどうかを考える必要があると再認識しました。 従業員調査の見方は? 従業員サーベイの結果を集計・分析する際には、勤続年数や部署ごとの違いなど、比較するための項目を設定し、その項目ごとの数値の違いを検証する手法が有効だと思いました。過去と現在のデータをグラフで比較すると、経営陣にも伝わりやすい形で分析結果を示すことができると確信しています。今後の学びを通じ、より良い分析手法を身につけたいと考えています。 評価の背景を読む? また、評価の集計においても、単に数値を合算するだけでなく、個々の数値を詳細に分析することで、評価の変動に対する背景(仕事の内容や健康状態など)を把握し、人事としての原因究明に役立てられると思いました。 導入検討時の比較は? さらに、物品やシステムの導入検討時も、購入したい対象の販売元のデータだけに依存せず、導入の目的や他の製品との比較を行うことが重要だと感じました。例えば、現状のシステムから変更する際、どの点で改善が期待できるのかを明確にすることが求められます。 条件判断の極意は? 最後に、同じ条件での比較という考え方についてはなんとなく理解できましたが、本当に同じ条件なのかをどう判断するかという具体的なコツについては、まだ疑問が残ります。データ分析初心者として、わからない点が多い中で、皆さんと一緒に学びながらより深い気づきを得られればと思っています。

データ・アナリティクス入門

朝活で実践!残業削減の挑戦

正解はどこにある? ビジネスにおいて、問題の「正しい」原因を特定するのはほぼ不可能です。ひとつの「正解」を求めるのではなく、さまざまな手法を試す中で気づくポイントがあると感じます。具体的には、What、Where、Whyの順に仮説を絞り込み、Howで実践するというステップを何度も繰り返すことが重要です。 根拠は見えますか? 原因を追及するためには、まず業務や問題をプロセスごとに分解すること。そして、考えられる複数の選択肢を洗い出し、根拠を持って絞り込む作業を行うことで、データに基づいた分析を進め、問題解決の精度を高めていきます。さらに、仮説を試しながらデータを収集し、結果を組み合わせてより良い解決策に導く方法が有効だと考えています。 実践の鍵は何? この考えをもとに、まずは自分自身の業務を一つのプロジェクトとして見立て、実践してみることにしました。具体的には、例に挙げられていた通り、残業時間を削減する取り組みから始めるつもりです。私の業務は3月から徐々に繁忙期に入り、5~6月がピーク。今回は複数の新規プロジェクトも同時進行しているため、学んだ知識を実際に試し、可能であれば周囲のメンバーも巻き込むことを目標としています。 朝の時間は有効? また、グループワークの際にも公言した朝の時間の有効活用を、具体的な行動計画として取り入れていこうと思います。早く出社するとつい業務に取りかかってしまいがちですが、少なくとも30分はこの計画に充てるよう心がけます。これまでなかなか実践できずにいたのですが、今週から出社時はカフェで、在宅時は始業前に、徐々にルーティンを整えつつあります。これからは、朝の時間をうまく活用し、残業削減プロジェクトを推進していく所存です。
AIコーチング導線バナー

「良い × 仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right