クリティカルシンキング入門

視点を変える力で夢を実現する

なぜ認識が変わった? 受講前は、クリティカルシンキングとロジカルシンキングの違いがよくわかっていませんでした。しかし、学ぶ中で、ロジカルシンキングはモレやダブりが無いように論理的に話すことを指し、クリティカルシンキングは視点や視座を変え、視野を広く持ち、疑いの目を持って思い込みをできるだけ排除することを指していることが理解できました。また、自分には無意識の思考の偏りがあることも明らかになり、考える前には効率的な考え方をしっかり構築することの重要性を感じました。 どこへ向かうの? 私は、世界中の人々が人生の終わりまでしっかりと視力を保てる社会を目指したいと思っています。そのために自分が何をすべきかを考え、新しい事業の提案を試みています。多くの課題があり、その中から進めるべき事業を選び出す必要があります。さらに、その解決方法について仮説を立てて検証を進めていきたいです。クリティカルシンキングを身につけ、客観的かつ多角的に物事を見て、進むべき方向を決定したいと思います。そして、決定後には承認を得て、計画書を作成し報告することが求められます。立場や視座が異なる人々にも納得してもらい、支持を得られるようにしたいです。 どう改善する? 私自身、無意識に思考が偏ることがあります。何かを考える際、一度良い案だと思い込むと、視野が狭くなり他の可能性に気づけなくなることがあります。そこで、意識的に「本当にそうなのか?視点を変えるとどうなるのか?立場が変わるとどうなるのか?他の可能性は?」と考える癖をつけたいと思います。論理的に考えまとめ、それを言語化することに対して苦手意識があり、時折逃げたくなることがあります。しかし、少しでもその苦手意識を減らし、夢の実現に向けて効率的に動けるよう努力したいと思っています。そのために、クリティカルシンキングのワークを通じて、これまでできていなかった考え方を発見し、日常の思考に取り入れていきます。

データ・アナリティクス入門

データの本質を掴む!実務に活かす分析技術

分析の本質とは? この学びを通じて、分析の本質を理解することができました。分析とは「比較」することが核心であり、特に条件を整えた「Apple to Apple」の比較が重要です。まずは「何を明らかにしたいのか?」を明確にし、そのために「何と何を比較すべきか?」を定めることが大切です。 棒グラフ作成の注意点は? 印象に残った点として、棒グラフの縦軸と横軸など、細かな部分にまで注意を払ってより分かりやすく伝えることが求められるということです。例えば、縦軸は上がった・下がったを示し、横軸は要素間の比較を表現します。普段は手元のデータだけで判断してしまうことが多かったと気づかされました。この分析の本質は、課題解決のための分析決定だけでなく、解決策の実行後の効果検証にも活用できると感じました。 具体的な応用法は? 具体的な応用として、解決策の効果を比較することが挙げられます。解決策を導入する場合としない場合での比較を行い、条件をできるだけフェアに揃えることが重要です。この考え方を業務に活かすことで、顧客の課題を定量的に解決する方法を確立し、納得できる成果を提示できるようになると期待しています。 より良い分析へのプロセス この知識はすぐに実務に活用できるもので、特に分析の本質を理解できたことは大きな収穫です。今後、以下の流れを意識して分析の質を向上させていきたいと思います。 まずは課題の明確化から始め、何が課題なのかを特定し、解決するためにどのような分析が必要かを考えます。次に仮説を設定し、それを検証するためのデータを収集します。重要なのはフェアな条件で比較できるようにデータを集め、分析結果を分かりやすく可視化することです。 最後に、結果を解釈し示唆を整理します。ただ結果を提示するだけではなく、その傾向や含意をまとめ、目的に沿った分析であるかを確認します。この一連のプロセスを通じて、より質の高い分析を目指していきます。

データ・アナリティクス入門

仮説と検証で切り拓く成長の軌跡

仮説と検証の意義は? 日々の実務経験を通して、仮説には大きく「結論の仮説」と「問題解決の仮説」があること、また仮説と検証をセットで考える重要性を実感しました。正しい仮説を用いることで、各自の検証マインドが向上し、説得力が増すとともに、ビジネスのスピードや行動の精度が上がると感じています。 良い仮説の作り方は? また、良い仮説を立てるためには、普段から知識の幅を広げ、ラフな仮説を積極的に作成する意識が必要だと納得しています。「創造的な仮説を考えるコツ」として、常識を疑うこと、新しい情報と組み合わせること、そして発想を止めないことが挙げられ、これらはデザイン思考とも通じる部分があり、組み合わせて実践するとより効果的だと感じました。 新たな分析手法は? 普段から使うフレームワークだけでなく、あまり意識していなかった分析手法を取り入れることで、仮説をより広い視点から考えることができると実感しています。例えば、従来の分析手法に加え、最新の視点での分析である5Aカスタマージャーニーを通じた気づきを得るなど、知識の深化が仮説の幅を広げる一助となっています。 新規施策の仮説は? 店舗オペレーションの改善や新規施策の導入時には、常に仮説と検証を繰り返しており、今後もあまり意識していなかった分析フレームワークを積極的に活用することで、より多様な仮説を立てる努力をしたいと考えています。また、セグメンテーションの切り口にも着目し、普段とは異なる視点からデータを考察する習慣を身につけることで、全体の分析力を向上させたいと思います。 マネージャーの挑戦は? さらに、チームマネージャーとしての役割を果たす中で、自らが率先して行動すること、的確な質問によってメンバーの成長を促すこと、そしてチームメンバーと役割分担を行いながら仮説と検証を実践することを意識的に業務に取り入れ、チーム全体のスキル向上に努めたいと考えています。

データ・アナリティクス入門

多角的仮説検証で未来を拓く

仮説の意義は何? 仮説とは、ある論点に対する一時的な答えであり、これを正しく用いることで個々の仕事に対する検証マインドが向上し、説得力を高める効果が期待できます。また、ビジネスのスピードや行動の精度を向上させる点でも大きなメリットがあります。 多角的視点ってどう? 仮説を立てる際は、1つの切り口に固執せず、複数の視点からアプローチすることが重要です。異なる視点を網羅することで、問題の原因や解決策を多角的に捉えることが可能になります。フレームワークを活用すれば、自分の思考の幅を広げながら、多様な仮説を漏れなく立てることができるでしょう。 仮説の種類は何? また、仮説には「結論の仮説」と「問題解決の仮説」という2種類があり、時間軸に沿ってその内容が変化することも特徴です。仮説検証のプロセスでは、既存のデータ(売上数値やアンケート結果、市場調査レポートなど)を活用する方法と、必要に応じて新たにデータを収集する方法が考えられます。 反証データは必要? 検証にあたっては、自分の仮説を支持するデータだけではなく、反証となるデータも積極的に集めることが不可欠です。都合の良いデータだけを選別すると、結論が誤るリスクが高まるため、幅広い視点から情報を収集する姿勢が求められます。 各視点はどう整理する? 以上のように、仮説は「What」「Where」「Why」「How」といった4つの視点を意識して整理する必要があります。仮説の網羅性と多角的視点、そして反証データを意識することで、広告運用の分析の質や精度向上につながると感じました。たとえば、キャンペーンの予算配分の最適化やランディングページの改善、広告クリエイティブの効果向上、新たなターゲティングの発掘などに対して有効なアプローチだと思います。ただし、優先順位の付け方がまだ未熟な部分があるため、初めはさまざまな切り口での仮説検証に取り組んでいきたいと思います。

クリティカルシンキング入門

反射思考を打破する問題解決法

直感判断、信頼できる? 実践的な場面に直面すると、つい反射的に考えてしまうことが多いと実感しました。人の思考には必ず偏りがあり、目の前の課題に対し、反射的に思い浮かんだ解決策をすぐに当てはめるのは避けるべきです。 その理由として、 1. 反射的に思い浮かんだ解決策は、自分の経験や限られた知識に基づいた発想である可能性が高いこと。 2. そもそも、そのことが本当に課題であるかどうかを検証していないため、無駄になる恐れがあること。 3. 解決策の目的に立ち返らないと、方向を見失い、無駄な労力を使う可能性が高いこと。 4. 解決策をMECEで考えないと、考え方に広がりが欠けること。 そのため、まずは何が課題なのかを最優先に考えるべきです。「ISSUE」こそが最優先です。このためには、最適な「問い」の設定が不可欠です。 目標設定は見直す? 身近な事例で考えると、「来場者を10%増やすためにはどうすればよいか?」という目標がありますが、その前に、なぜ10%が必要なのかを検証した方が良いです。そして目標を10%に設定した場合、そのための仮説を立て現状を分析します。この際、データを集めるだけでなく、視覚化することが大切です。具体的には、データをグラフにする、日別・月別・季節別に分ける、目的別・性別に分析するなどの方法があります。 課題はどこにある? さらに問題を明確にするために、ピラミッド・ストラクチャーを用いて広さと深さの視点で整理し、どこに課題があるのかを明確にします。その上で、課題への施策を洗い出し、優先順位を付けて実行します。 共有は大切か? 日々クリティカルシンキングを活用する場面が訪れるので、毎回面倒がらず、自分を批判するつもりで取り組みます。これを実践すれば、メンバーの中でクリティカルシンキングを知らない人が困惑するかもしれません。しかし、思考法を共有した上で実行することが重要です。

データ・アナリティクス入門

仮説構築のフレームワークで実力アップ

仮説構築で何を優先すべき? 仮説構築のポイントについて学んだことは、以下の通りです。 まず、仮説構築では複数の仮説を出すことが重要です。3Cや4Pといったフレームワークを活用し、網羅性を持たせることが求められます。決め打ちにしない姿勢も大切です。 次に、仮説を絞り込むための基準としては、具体的なデータや根拠が必要です。たとえば、SNSのプロモーションが弱いと判断する場合、その根拠を明確にする必要があります。 どのデータを用いるべき? データ取得や計測前には、指標の絞り込みが重要です。何を比較すれば仮説が立証されるのかを確認します。例えば、故障件数ではなく、1件あたりの対応時間を指標とすることが有効です。 また、比較対象のデータも集める必要があります。Aが正しいというだけでなく、BやCを否定するデータも必要です。これにより、より説得力が増します。 仮説検証の鍵とは? 仮説には「結論の仮説」と「問題解決の仮説」があり、それぞれの使い分けと違いを意識することが重要です。問題解決の仮説では、社内のシステム切り替えにおいて複数の製品候補の中から1つを選ぶ際、網羅性のある原因究明と問題箇所の特定が求められます。A製品が良いというデータだけでなく、他の製品(B, C)がダメというデータも揃えることで、Aの比較優位性を証明することができます。 フレームワーク選択の重要性 仮説検証のシミュレーションでは、まず仮説の洗い出しを行います。3Cや4Pのフレームワークが適用できるかどうかを検証し、適していない場合は他のフレームワークを検討します。 最後に、データ検証の洗い出しでは、取得可能なデータの確認と、どの指標が計測・取得すべきデータなのかを特定します。これにより、仮説の検証がスムーズに進むでしょう。 以上のポイントを踏まえて、仮説構築と検証のプロセスを実践していくことが大切だと感じました。

デザイン思考入門

共感が紡ぐ本質の発見

誰のために取り組む? 社内でデータ活用推進を担当する中、どのような人に、どのような目的でコンテンツを活用してもらいたいかを考える必要性を改めて実感しました。今回、デザイン思考における課題定義を学ぶ中で、まず「誰のための取り組みか」を明確にする重要性を再認識しました。各部署で業務状況や意識が異なることを踏まえ、ヒアリング内容に加え、「もしこの人が○○だったら」という仮説的な視点を取り入れてペルソナを作成することで、対象者の背景や課題、感情に寄り添った検討が可能になりました。その結果、リアルな声だけに捉われず、幅広い視点から課題を捉える仕組みづくりの基盤ができたと感じています。 解決策に頼りすぎ? 今回の振り返りを通じて、解決策ありきで考えないことの大切さを強く感じました。業務の中で、つい「このダッシュボードを作れば良い」「この機能を入れれば便利になる」といった解決策から考えがちですが、本当に解決すべき課題は、ユーザー自身も言語化できていない無意識の困りごとである可能性が高いと気づきました。そのため、なぜその現象が起きるのか、背景にはどんな要因があるのかと問い続ける姿勢が、持続的な価値提供につながると実感しています。 本質的な課題の見極め? また、課題定義においては、共感フェーズで得た具体的なエピソードや感情を丁寧に読み解くことが非常に重要だと学びました。単に「この人はこう言っていた」という事実を受け止めるだけでなく、「なぜ自分がそこに共感したのか」「その言葉の裏にある背景や価値観は何か」と考えることで、深い理解につながります。さらに、課題を抽象化して定義する際には、まず具体的な現象を十分に観察・収集し、そこから意味を引き出すことが大切だと感じました。抽象化は便利な反面、現実との乖離に陥るリスクがあるため、具体から出発し共感を手がかりに本質的な課題を見極める力を今後も養っていきたいと思います。

データ・アナリティクス入門

仮説思考で未来を拓く!

仮説のメリットは何ですか? 「仮説」とは、ある論点に対する仮の答えのことです。この仮説を用いることで、説得力の向上、問題意識の高まり、スピードアップ、行動の精度向上といったメリットがあります。仮説は目的に応じて分類され、さらに時間の経過を考慮して整理されます。例えば、過去の問題を解決する方法として仮説を立てることができます。 正しい仮説の見方は? 仮説を立てる際は、目の前の数字だけにとらわれずに俯瞰してみることが重要です。複数の仮説を決め打ちせずに立て、網羅性を持たせるためにさまざまな切り口を考慮します。また、都合のよいデータだけに頼らず、反論を排除するまでの検証が求められます。 仮説技法のコツは? 仮説を立てるテクニックとして、「なぜ」を繰り返して知識を広めたり、別の視点や時系列で考えることが挙げられます。また、ラフな仮説を作る際には、常識を疑い、新しい情報と組み合わせ、発想を止めないことが大切です。 リーダーはどう実践すべき? リーダーの役割として、仮説を検証するプロセスを習慣化するためには、率先垂範し、仮説と検証方法を常に考えることが重要です。また、質問を使ってコーチングを行い、チーム内での役割分担によるブレインストーミングやディスカッションを推進します。 新仮説はどう生まれる? 創造的な仮説を考えるためには、ビジネス内外の組み合わせや否定的な問いを投げかけると良いでしょう。そして、仮説、データ分析、検証方法をセットで考え、それをチームで共有することが求められます。 どう自己を再確認? 最後に、パッションを高めるための自問を言語化し、自分の生きがいやパフォーマンスを再確認することも重要です。これには、自分の目標を再確認し、現在の状況に対する考えを深めることが含まれます。こうしたプロセスを通じて、自身の成長とチームの成功を目指します。

データ・アナリティクス入門

問題解決へのアプローチを学ぶ

原因をどのように探る? 原因を探究することについて学びました。問題の原因を明らかにするためには、その問題に至るまでのプロセスを分解して考えるアプローチがあります。複数の解決策を用意し、それらを判断基準の重要度に基づいて根拠をもって絞り込むことが重要です。 データ分析の精度を高める方法は? 具体的なステップを踏んでデータを分析し、問題解決の精度を高める方法や、仮説を試しながらデータを収集し、より良い解決策に繋げる方法を学びました。これら両方のアプローチを組み合わせることで、データ分析の精度を一層高めることができます。例えば、「自分の残業時間」について考えてみると良い練習になります。 A/Bテストはどのように進める? 【A/Bテストについて】 A/Bテストとは、二つの施策を試し、比較するテストです。目標の設定から始まり、改善ポイントの仮説設計、実行までのステップを踏みます。優位なデータ数が集まるまで行い、その期間内で検証を行うことが重要です。目的と仮説を明確にし、シンプルで低コストかつ少ないリスクで運用できるようにすることが求められます。 残業問題をどのように解決する? 試しに「自身の残業時間」の多さについて考えてみました。棚卸できる業務をその場しのぎで抱えていたり、時間割やスケジュールの把握が疎かになっていたりと、整理すべき項目はいくつか見つかりました。複数の解決策を導くためには、まだ整理しなければならない複合的な原因が残っていますが、「有耶無耶」な部分を明確にすることで解決策が見えてきました。 今後の課題解決のステップは? 今後は、メンバー個別の面談や少人数のミーティングを通じて、現在の課題を一緒に洗い出し、原因を突き止めてみることを実践したいと考えています。そして、仮説を立て、複数の解決案をもって組織としての意思決定や問題解決に繋げていきます。

データ・アナリティクス入門

分析で見つけた新たな発見と気づき

比較による効果測定とは? 分析とは、比較することである。まず、分析する項目を整理し、各要素の性質や構造をはっきりさせることが重要だ。何かの効果を測りたい場合、「ある」場合と「ない」場合で比較を行い、分析対象以外の条件も整える必要がある(これは「Apple to Apple」と呼ばれる)。 データ分析の目的と仮説 データ分析を行う際には、まず目的と仮説を立てる。例えば、データ分析の目的は何で、その結果どのような状態を目指すのかを明確にすること。そして、どの項目を分析すれば目的を果たせるのか、その項目をどのようにデータ加工すれば良いのかを考え、具体的な仮説を立てることが大切だ。 適切なデータ加工と表現法 データにはその種類に応じた加工法やグラフの見せ方が必要である。割合で表現するのが適切な場合と、実数(本来の値)で表現するのが適切な場合がある。また、質的データ(数値の大小に意味がないもの)と量的データ(数値に意味があるもの)の違いを見極める必要がある。 人事部門のデータ活用法 人事部門では、健康経営やエンゲージメントに関するデータを扱い、改善に向けた施策を企画することが多い。このため、データを活用して課題解決や目標達成のためのPDCAサイクルを効果的に回せるようにすることが求められる。これまでの施策参加者がどれだけ改善したか、「参加した人の中で●●をした人はより■■だった」といった分析を行うが、このためには、参加者と不参加者の間での比較を行うことが重要だと感じている。 目的設定と議論の重要性 まずは、目的を明確にし、自分自身の思い込みや仮説に偏らず、上司やメンバーと徹底的に議論することが必要だ。次に、課題に対して目指す姿を定量的にKPIとして設定し、現状を把握する。算出するデータに定義と根拠を持ち、それを分かりやすく伝えるスキルを身に付けることも重要である。

データ・アナリティクス入門

問題の原因をデータ分析で解明!

問題の原因をどう探る? 問題の原因を探るためには、データを確認しながら原因を突き止めることが重要です。問題の原因を明らかにするために、プロセスを分散して問題箇所を絞り込み、原因の仮説を立てるのが効果的です。問題がある場合、その結果には必ずその流れがあり、その流れを押さえることで、プロセスのどの段階に問題があるのかを特定できます。 解決策の検討はどう進める? 解決策を検討する際は、複数の選択肢を洗い出し、根拠を持って絞り込むことが求められます。ステップを踏んでデータを分析し、問題解決の精度を高めることと、仮説を試しながらデータを収集し、より良い問題解決に繋げることは、両者のアプローチを組み合わせることが効果的です。まず手始めに身の回りのデータを分析すること、分析の練習を積み重ねること、そしてどんな分析計画を立てるかシミュレーションし、どんな情報を誰から収集するのか、データはどんな形で収集すればよいかを考えることが大切です。 シンプルで低コストなA/Bテストの利点 A/Bテストは、AとBの施策を比較するシンプルなテストです。運用や判断がしやすく、低コストで少ない工数で実施できるため、リスクが少ない。A/Bテストを行う際には、目的や仮説をしっかりと明確にし、有効なデータが集まるまで実施します。ただし、複数の要素をテストしたい場合には別の手法を検討すべきです。また、パターンは同時に同じ期間行うことが必要です。 データ分析の第一歩は何から始める? 解決策を考えるときには、必ず複数の選択肢を検討し、「ステップを踏んでのデータ分析」と「仮説を試しながらのデータ収集」の両輪で分析を行うことが効果的です。分析が苦手な方には、まず身の回りのデータを分析すること、分析の練習を積み重ねること、そして問題にはそこに至るまでの流れがあることを意識することをお勧めします。

戦略思考入門

戦略で学ぶ!時間と戦うビジネス学

トレードオフとは何か? 戦略における選択や「捨てる」というプロセスを実践する中で、トレードオフの概念について学びました。これは、何かを追求する際に別の何かを犠牲にしなければならないという理論です。この考え方は、ビジネスだけでなく日常生活でも無意識のうちに実践していることで、とても身近に感じられました。 優先順位の付け方の重要性 ビジネスの場面では、特に時間という限られた資源に直面することが多く、必然的に何かを捨てる選択を迫られます。今回、優先順位の付け方を実践的に学ぶことで、これまで直感に頼っていた判断に客観的な視点を加えることができるようになりました。その結果、判断軸がぶれることなく、問題解決にスピード感を持って取り組むことができると感じました。 スタック・イン・ザ・ミドルのリスク また、コスト・リーダーシップ戦略と差別化戦略というトレードオフの関係にある要素を両立しようとすると、「スタック・イン・ザ・ミドル」に陥るリスクがあることも学びました。 効果的なコンテンツ企画とは? 今後、国際戦略の一環としてイン・アウトバウンドを促進するために、新たなコンテンツ企画を進める予定です。その際、効果的な戦略を考えるとともに、工数と集客効果のバランスにも配慮したいと思います。具体的には、インタビュー企画を検討していますが、広報活動においてはあまり凝った制作をせず、限られた時間内で魅力的なコンテンツを制作することを心掛けています。 媒体選定と効果検証のポイント まずは、どの媒体にコンテンツを掲載するのかを決め、その効率性を考慮します。過去の閲覧数やフォロワー数を参考に、より良い結果を得られる媒体に集中して時間を使い、その後、仮説が正しかったか検証します。そして、予期しない結果が得られた場合には、次回のコンテンツ企画に向けて修正案を練る予定です。
AIコーチング導線バナー

「良い × 仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right