データ・アナリティクス入門

仮説検証で拓く本質への道

本質に迫る秘訣は? これまでは、都合の良い答えに飛びつき、裏付けが偏った分析をしてしまっていたことに気づきました。しかし、問題解決のプロセスに沿って仮説と検証を正しい順序で進め、事実に基づいて判断することで、本質的な課題に早くアプローチできると学びました。 目的の重要性は? また、分析に取り組む前には、まず目的を明確にすることが極めて重要であると実感しました。目的が曖昧だったり、途中で忘れてしまうと、結論を導き出せず成果へとつながりません。定期的に目的を振り返ることで、必要に応じた軌道修正が可能になるという点も大きな収穫でした。 複数視点の意味は? さらに、分析を行う際には、単一の数字や結果だけに頼らないため、比較を行うことの重要性を再認識しました。一つの指標だけでは陥りがちな思い込みを避け、複数の視点から検証することで、説得力のある結論に近づけると感じました。 具体策をどう試す? 具体的な実践としては、月ごとの売上データに実際に触れてみることにしています。これまでは解説付きの資料に頼りがちで、問題点やその対策が本質的に理解できていなかったと感じます。売上の増減に影響を与えている要因を、自部門の活動と照らし合わせながら振り返り、今後の対策へとつなげていこうと思います。

データ・アナリティクス入門

ひたむき仮説で未来を創る

仮説設定の意義は? 講座を受講して、データ分析のテクニックを学ぶことができました。しかし、分析そのものはAIに任せることが可能であり、本当に人間に必要とされるのは、データ分析の目的を明確にし、適切な仮説を設定する能力だと実感しました。正解に飛びついてしまいがちな思考停止の傾向を反省し、より良い仮説を見出すために、あきらめずトライ&エラーを重ねていきたいと考えています。また、当たり前を疑う力や、本質的な課題を見極める力、さらには分類のスキルを養うことの重要性も感じました。これらは次週以降や実践の場で活用していきたいと思います。 内部監査の視点はどう? 私は内部監査を担当しており、より鋭く価値ある提案ができるよう、今後はさらに良い仮説を立てる努力を重ねるつもりです。自分の考えや視点の狭さに日々反省しながら、「この事実から何が言えるのか」という問いに徹底して向き合っています。 現場改善はどうする? また、狭い視点に陥らないために、マネジメント視点やクリティカルシンキングを意識するとともに、現場の状況を十分に踏まえた提案ができるよう努めています。具体的には、何が問題なのか、どうすれば現場が改善されるのかをデータを裏付けに、しっかりと整理して提案していきたいと考えています。

データ・アナリティクス入門

仮説思考で未来を切り拓く

思考はどう深まる? 毎回、自分の思考が浅く、もっと広い視野を持つ必要性を痛感しています。かつて学んだ3Cや4Pのフレームワークは、今回は思うように活用できませんでしたが、仮説思考はデータ分析に限らず、経営戦略やマーケティングなど、様々な分野で常に求められる大切なスキルだと感じています。 偏りをどう避ける? また、データ分析において外部データを活用する際は、あらかじめ結論を決めて自分に都合の良いデータだけに偏らないよう、常に注意する必要があります。複数の仮説を立て、網羅的な視点を持つことが求められる一方で、これまでの自分の取り組みには網羅性が不足していたのではないかと感じています。今後、販売戦略や方針策定の際には、網羅性やデータの客観性・妥当性、すなわち根拠の質を向上させることで、提案の説得力を高めていきたいと思います。 結果の根拠は? データ分析にあたっては、まず仮説の網羅性を重視し、文字や図表などを用いて過不足を冷静に判断できるよう努めます。こうした仮説思考は問題解決の場面で非常に有用であり、社内でのディスカッションにも積極的に活かしていきたいと考えています。また、データ分析結果をアウトプットする際は、その目的や使用したデータの根拠を明確に示すことを心がけます。

データ・アナリティクス入門

ロジカル思考で未来を創る

仮説を深掘りするには? 視野を広げて仮説を考えるために、3Cや4P、SWOT、5W1Hなどのフレームワークを活用するという視点は、自分にとって盲点でした。普段は頭の中で拡散的に物事を捉えがちですが、MECEに沿った論理的な整理ができるこれらの型を使うことで、抜け落としていた観点を補うことができると実感しました。 データの活用法は? また、データの取得方法についても、新たにアンケートなどで新しいデータを取ることに注力しがちでしたが、既存のデータを活用する手段もすぐに実践可能であることに気づかされました。特に、パートナーが所持しているデータに着目するという考えは、近くにある資源を有効に利用する良いきっかけとなりました。私自身、所属するグループ全体でリソースを活用することの重要性を改めて認識しています。 問題解決の手順は? さらに、問題解決のステップとして「原因の特定」を意識してきた中で、WHAT→WHERE→WHY→HOWという一連の流れは、非常にわかりやすく、汎用性が高いと感じました。これまで以上に構造的な思考を促すツールとして、エクセルにフォーマット化したフレームワークをデスクトップに置き、仮説を立てるたびに都度活用していきたいと思います。

データ・アナリティクス入門

問題解決のための仮説構築法を再確認

仮説構築の重要性を学ぶ 今週は仮説構築の方法を学びました。仮説を立てる際には、複数の仮説を立て、その仮説同士に網羅性を持たせることが重要だと感じました。特に印象に残ったのは、仮説を立案しても都合の良い情報だけに頼らないことです。この点で、チームメンバーにも受講してもらいたいと強く思います。 ミニマム検証の重要性 仮説を立てた後、ヒアリングやアンケートなどを通じてミニマムに検証を行い、そのプロセスを繰り返すことが新規事業の場でも求められます。このことを再確認できました。 検証結果報告の注意点 現在、10月の実証実験に向けて、検証目的や結果の仮説を立案しています。検証結果を報告する際には、都合の良いデータだけを取得し、反論を排除することは絶対に避けたいと感じています。そのため、3C分析や4P分析といったフレームワークを活用し、再度検証結果の仮説立案を試みる予定です。 仮説立案を継続する意義 日々の業務においては、改めて仮説立案を実行し、問題解決の仮説について考えていきたいと思います。具体的には、what、where、why、howといった視点から仮説を再度見直すことで、自分の業務に対する関心や問題意識を向上させようと考えています。

データ・アナリティクス入門

一歩先行くヒントは4Pにあり

仮説の幅をどう広げる? GAiLで4Pフレームワークを活用することで、仮説の幅を広げる経験ができました。この学びから、3Cや4Pフレームワークを活用し、反復してアウトプットする重要性を改めて実感しました。また、仮説の意義や目的についてもしっかりと学ぶことができ、日常の業務において自ら仮説を持つことの大切さを再認識することができました。 データで何が変わる? 一方で、「平均を算出したり標準偏差を求めたりするひと手間を惜しまない」「必要なデータがない場合は、仮説を裏付けるために自らデータを取りに行く」という点が特に耳に残りました。忙しさを理由に現状のデータだけで問題解決できると考えがちですが、より良い解決のためには、ひと手間をかける姿勢が必要だと感じています。 未来志向の仮説は? これまで、問題解決の仮説を立てる際には、過去のデータに依存する傾向がありました。しかし、現在の業務では将来に向けた視点が求められているため、思考のアプローチを変える必要を感じています。今後は、過去のデータだけに頼るのではなく、アンケートやインタビューなどを活用して新たなデータ取得に努め、4Pフレームワークを用いて幅広い仮説の検証に取り組んでいきたいと思います。

データ・アナリティクス入門

仮説から見える学びの真実

仮説に盲点はあった? 仮説を立てる際、ついつい決め打ちになっていたように感じます。また、仮説同士の網羅性が不十分であったため、上位層のレビューで指摘を受けたことに気づくことができました。特に、手間を惜しまないことの重要性が印象に残っています。 仮説の種類を見分けた? 「仮説」という表現はよく使っていただけたものの、「結論の仮説」と「問題解決の仮説」という種類があることに気づくことができ、良い気付きとなりました。 戦略で仮説活かせた? 今期の戦略策定にあたっては、結論の仮説と問題解決の仮説を活用し、目標に対するゴールを設定する方針です。また、現在課題となっているサービスの継続率向上のために、問題解決の仮説を用いてアプローチを検討しています。 データで仮説検証? そのため、昨年度の契約状況に関するデータを収集し、業種や支援内容など様々な角度から比較して仮説を立てる計画です。 戦略計画は整った? 戦略の策定は1ヵ月以内に完了させる必要があるため、まず事業部の戦略目標や方向性、自身の売上目標を確認します。その上で、契約に関するデータ(契約のきっかけ、契約内容、単価、期間、業種)を収集し、比較・分析を行う予定です。

データ・アナリティクス入門

論理と仮説で挑む解決の道

どうして仮説思考? データ分析においては、目的を明確にし、仮説思考で取り組むことが重要だと再認識しました。問題解決のステップを復習・整理する良い機会となり、筋の通った仮説を立てるためには、多面的な視点からロジックツリーを活用することが有効であると実感しました。一方で、可能性のある原因を網羅的に洗い出すという点ではまだ苦手意識があるため、今後も意識的に仮説思考の習慣を身につける必要があると感じました。 離脱上昇の背景は? 自社のSaaSプロダクトの中では、あるものについて利用者の離脱率が上昇している現状を踏まえ、本講座で学んだ問題解決のステップを振り返りながら検討を進めています。複数の解決策を洗い出すことができたら、それを今期の重点施策として実施し、PDCAサイクルを回す計画です。 論理思考がなぜ大切? これまでの取り組みでは、なんとなくデータを眺め、漠然とした仮説に基づいて解決策を考えてきました。しかし、本講座を通じて、論理的な思考と筋の通った仮説検証こそが、問題解決に直結する重要なプロセスであることを学びました。また、取り組みの中でミーティングを通じてチームメンバーとアウトプットや意見交換を行うことの大切さも実感しました。

マーケティング入門

心に響く体験の新発見

どうして体験が大事? 商品単体の価値だけでなく、関連するポジティブな体験を伴うことで他社との差別化が図られると実感しました。接触時間が長くなるほど、商品やサービスへの理解が深まり、結果として選ばれやすく購買行動につながるメリットがあるのです。さらに、感情と結び付いた体験は唯一無二のものとなり愛着が生まれる一方、悪い体験が記憶に残ると、顧客が再び戻ってこなくなるリスクも孕んでいます。 魅力はどう伝わる? 一方、主力となる診療科は成熟した市場でトップシェアを誇るため、顧客に対していかに魅力的な体験を設計できるかがリード企業としての使命であると感じています。同じ体験の繰り返しを避けるために、常に顧客の情報を収集し、最新の動向を踏まえた新たなポジティブ体験の構築に努める必要があります。 次はどう進む? 直近では大規模な学会において、顧客体験をテーマにしたブースが企画されています。実際に顧客とのコミュニケーションを積極的に図りながら仮説検証を進め、来年度に向けた新たなポジティブ体験の設計を目指す方針です。また、新たな診療科においても、商品の持つ機能的価値のみならず情緒的な価値についても常に検証を行い、より良い体験提供に取り組んでいきます。

データ・アナリティクス入門

仮説から未来を拓く学び

なぜ仮説は大切? 「良い仮説」という言葉が非常に印象に残りました。これまで、問題が発生した際には、過去の経験や思い込みに基づいた一方的な判断に頼っていた部分があったと感じています。今後は、問題に対して複数の仮説を立て、それぞれを検証していくことが大切であると考えています。 売上課題の原因は? 私の担当している製品販売では、代理店を通じた受注や売上に関する問題が頻繁に生じます。こうした課題に対しては、さまざまな仮説を立て、検証を進めることで問題解決を図る必要があります。特に、施策と受注売上の関係性を十分に考慮して対応することが重要だと思います。 セミナーの現状は? まずは、施策に関する問題点を整理することから始めます。長年、定期的にセミナーなどを実施してきましたが、必ずしも思うような成果に結びついていない現状があります。今後は、まず顧客のニーズを正確に把握し、現行のセミナー内容が実際に顧客の要望に合致しているのか、改めて検証する必要があると考えます。 3C分析で状況は? そして、まずは3C分析を通じて状況を明確に把握した上で、複数の仮説を立て、順次検証を行っていくことで、今後の改善策を模索していきたいと思います。

データ・アナリティクス入門

データ分析から始める業務効率化のアイデア集

分析はどのプロセスから始める? <印象に残った内容> ・プロセスに分解し、各プロセス毎に数値を見る ・A/Bテストの前に目的と仮説を明確にする ・データ分析はまず身近な課題から着手する A/Bテストの代替案は? <感想> A/Bテストはオンラインサービスとの相性が非常に良いが、対面サービスやコストの問題で簡単に実施できない場合の代替案が気になりました。 残業時間削減へのアプローチ ①社内で使用しているSFA(営業支援システム)の切り替えに伴い、入力画面のインターフェース検討においてFigma等のツールを使ってA/Bテストを実施し、手戻りが無いようにする。 ②今後の人員削減に伴い、業務の棚卸しを行う。 この切り替えは少し先になるため、思考訓練として自分の残業時間を減らすための施策を考えました。 まず、業務の洗い出しと各業務のプロセスの分析を行います。そして、以下の代案を検討します。 外注や自動化は可能? ・外注の可能性を探る  ・無料の外注が可能か  ・有料の外注が利用できるか ・自動化を進める ・不要なプロセスを廃止する 以上のステップを踏み、効率的かつ効果的な業務運営を目指したいと考えています。

データ・アナリティクス入門

フレームワークが導いた学びの光

原因解析のコツは? what→where→why→howの順に問題を捉えることで、原因解析を体系的に進めやすくなります。フレームワークを利用することで、見落としなく検討でき、説明もしやすくなる点が非常に役立ちます。また、自分自身の思考のクセを理解することで、視野が偏らないよう意識することも大切です。情報分析を通じて、傾向を把握し、結論へと近づくプロセスは非常に有益です。 合意形成の秘訣は? 通常業務の場では、まずイシューを明確にし、その上で他者と合意形成を図ります。次に、多様なアイデアを出しながら仮説を立て、検証を重ねることで、より説得力のある説明が可能になります。単なる常識的な案ではなく、分析結果を生かしながら良い案を生み出すことに挑戦することが重要です。 重要なポイントは? 例えば、コストダウン施策の検討においては、膨大なデータの中からどの部分に着手するかを問い、自分にとって最重要と思われる情報に絞って集中的に分析します。仮説を立て、検証を繰り返す過程は、開発業務と同様の手法で進められます。そして、問題解決のためにどのような手段が最適かを考え、他者にも分かりやすく伝える工夫が、成功へと繋がるポイントとなります。

「良い × 仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right