クリティカルシンキング入門

問いが輝く!手探りからの発見

初見の印象は? 最初に資料を見たときは、どのように進めればよいか少し迷いました。なんとなく手探りで取り組んでしまった感覚がありましたが、今まであまり経験のなかった他者作成のグラフを評価するプロセスは新鮮でした。資料がわかりやすく整理されているため、自分なりに「こうしたらもっと良くなるのではないか」という意見が湧き上がったことが印象的でした。 何が共感を呼ぶ? 資料を読み進めるうちに、自分の考えと照らし合わせて「自分が考えたことと一致している部分」や「ここは違うのでは」という疑問が次々と浮かび、設問に対して主体的に取り組むことができました。問いかけから議論を始める流れが、学習を楽しくする大きな要因となりました。 問いで業務改善? また、「問い」から始める、意識し続ける、そして共有するという考え方は、仕事の場面でミスが発生した際に問題点の発見や改善策の策定に役立つと感じました。経営者の視点を持つことは簡単ではありませんが、まずはこの基本的な考え方から実践してみようと思います。今いる部署でも、小さな「問い」を見つけることから着手し、その視点が業務改善に繋がることを期待しています。

アカウンティング入門

P/Lでひも解く成功の秘訣

P/Lの理解はどう? P/Lの理解を深めることで、表面的には同じように見えるビジネスでも、実際に資金の流れを追っていくと全く異なる性質を持つことに気付きました。単に売上高だけに注目しても、ビジネスの本質は見えてこないと実感しました。 販管費と原価の意義は? また、販管費と原価という二つの要素に着目するだけで、さまざまな観点から業務を捉えることができる点には驚かされました。このシンプルな視点が、ビジネスの理解を大きく深める手助けになると学びました。 何を学び取った? 具体的には、以下の三点が学びとして大変印象的でした。 ① 同業他社の分析を通じ、より良いサービス構築のヒントを得る。 ② 自社の強みや弱み、改善点を客観的に見つめ直す。 ③ 可能な限り多くの企業のP/Lを読み、様々な事例に触れる。 業界の多様性はどう? さらに、同じ業界内でもビジネスモデルには多様性が見られることを知り、興味が一層深まりました。自分の業界はバリエーションが少ないと思っていたものの、実際は全く異なるアプローチが存在することに気づき、他の分野での実例についても知りたいと感じています。

データ・アナリティクス入門

数字に秘めた改善の真実

平均と中央値はどう違う? 平均は全体の傾向を示す便利な指標ですが、外れ値の影響を受けやすいため、必ずしもデータの中心を正確に表しているわけではないと再認識しました。一方、中央値はデータを並べたときの中央の値であり、外れ値の影響が少ないため、偏りのあるデータに対して有効だと感じています。また、標準偏差を活用することで、同じ平均値でもデータのばらつきに違いがあることを明確に把握できる点が印象に残りました。 営業改善、ポイントは? 営業店の業務改善においても、代表値を活用する意義を学びました。具体的には、各店舗の業務処理時間を平均と中央値で比較し、処理時間が極端に長い業務がないかを確認することで、改善策の提案につなげる方法が効果的です。さらに、各営業店ごとの業務プロセスのばらつきを標準偏差で表現し、オペレーションの違いを把握する取り組みが有用であると考えています。 業務負荷の見極めは? また、ヒストグラムなどを用いて業務負荷の高い部分を特定し、改善の優先順位を決める手法にも触れ、業務効率化の進捗をグラフでフィードバックすることで、改善効果を視覚的に伝える方法の重要性も実感しました。

データ・アナリティクス入門

分解思考で見える未来への一歩

授業の何が良かった? ライブ授業でこれまで学んだことのおさらいができた点は、とても良かったと感じています。講義の中で、データ分析は比較が基本であること、また分析の前には明確な目的と仮説が重要であると改めて認識しました。 問題解決の視点は? さらに、問題解決には「what」「where」「why」「how」の視点が有効であると学び、特に「what」と「where」の感度を高めるために、分解の切り口を増やす活動に取り組む意欲が湧きました。 動画と集客はどう? また、動画クリエイティブの課題については、演者、媒体、長さなどの各要素に分解して問題点を特定し、数値の改善を目指す方法論が印象に残りました。同様に、集客キャンペーンの改善に関しても、何が悪かったのかを明確にすることで、次回実施への具体的な提案に繋げることの重要性を感じました。 分解は何を示す? とにかく、問題を分解して考える姿勢が大切だと実感しています。データを集めた後は、グラフなどを用いて視覚化することで理解を深め、施策実施後には常に仮説との比較を行って、正しかった点や改善すべき点を明確にしていきたいと思います。

データ・アナリティクス入門

グラフで見る!実務改善の秘訣

平均値の違いは? 平均値の種類やその違いについて整理し、理解を深めることができました。とりわけ、これまであまり使用する機会がなかった幾何平均についても、成長率といったテーマが出た際に活用できるよう意識する必要性を感じました。 分布と標準偏差は? 分布や標準偏差に関しては、これまで取り組んだことがなかった内容でしたが、グラフ化することで実務上の問題解決に繋がるという新たな視点を得ることができました。実際に、標準偏差はグラフにすると直感的に理解しやすく、非常に有効であると感じました。 代表値の比較は? また、代表値の比較を行う際に、ばらつきを示すグラフと代表値を並べて示す手法を知りました。これは、口頭での説明を簡略化する工夫としても効果的であるとの印象を受けました。以前、自社商品のカテゴリーの成長率について問われた際、どのような指標を用いるか迷った経験があり、現在では幾何平均も一つの選択肢として考えられるようになりました。 実務利用の事例は? 今後、平均値や標準偏差が実務でどのように活用されているか、具体的な事例があれば知りたいと感じています。

リーダーシップ・キャリアビジョン入門

部下の魅力を発見!振り返りの力

部下のモチベーションとは? この講座では、マズローの5段階欲求や衛星要因・動機付け要因といった理論を通して、部下のモチベーションの源泉を理解する大切さを学びました。これまで「仕事だからとにかくやる」という考えに偏りがちでしたが、今回の学びを通じ、部下の良い点を見つけて日常的に称賛することの重要性を実感しました。 振り返りはどう機能? また、業務における振り返りの方法も具体的に紹介され、実践する機会を得ました。話しやすい環境を整えること、良い点と悪い点の両面を整理する振り返りのプロセス、そして相手の話を最後までしっかり聞く姿勢が、成果につながることを改めて認識しました。自分の経験をただ語るのではなく、相手の発言を起点に深堀りすることで、普遍的な教訓として活用できる点が印象に残りました。 再現可能な成長策は? さらに、案件ごとに設ける振り返りの時間は、改善策の具体性を高め、再現可能なプロセスとして定着させるための良い機会となっています。最初は振り返りに対して気後れや手間を感じることもありましたが、実践するうちに職場全体の成長に寄与する効果を実感するようになりました。

データ・アナリティクス入門

仮説で切り拓く未来戦略

仮説をどう整理する? 今回の講義では、複数の仮説を立て、その網羅性に注目する視点が非常に印象的でした。これまで仮説検証に取り組む際、十分に意識していなかった点も改めて考える良いきっかけとなりました。特に、結論を導くための仮説と問題解決に向けた仮説を、過去・現在・将来の軸で整理して考える手法は、新たな学びとして大変有意義でした。また、仮説を証明するために必要なデータの収集方法や、データを加工する際の視点についても、今後さらに知識を深めるべきと感じました。 データで何を探る? さらに、Google Analytics以外の情報源、例えば売上データや顧客データ、購買データなどから顧客の傾向や購買パターンを把握し、適切な施策へと結びつける重要性を再認識しました。仮説検討時には3Cや4Pの視点を意識し、より具体的な改善策に取り組んでいきたいと考えています。担当クライアントのデータを活用しながら、どの組み合わせの商品が選ばれるのか、また一回あたりの購入金額をいかに向上させるかなど、具体的な戦略を検討し、常に新たな課題や仮説に向き合う姿勢を持ち続けることが大切だと実感しました。

アカウンティング入門

難解を超えた!財務三表の真実

経営者の意見はどう? これまで、財務三表は経営者層や上位管理者層が主に理解し運用しているものという印象がありました。しかし、今回の講義では「難しい」という側面だけでなく、「簡単である」という説明もあり、両面からのアプローチが納得感を呼びました。 指標の意味は何? 講義では、財務三表が歴史的に経営状況を簡単に説明するためにブラッシュアップされてきたという点が強調されました。そのため、単なる難解な指標ではなく、経営状況を見える化する有効なフレームワークであると実感できました。 投資と改善の鍵は? 今後、来年度の事業計画を策定する際には、所属する事業部の施策検討において、財務三表から投資すべきポイントや改善が必要な業務を明確にし、論理的な提案を行うことが重要だと感じています。また、競合他社の経営状況を把握する際にも、同様の分析が一助となるでしょう。 数字の信頼性はどう? さらに、講義を通じて、財務三表の数字が正当であるか、あるいは不正に操作されている可能性についても考察する機会となり、数字の信頼性をどのように見抜くかについて学びの意欲が高まりました。

戦略思考入門

経済効果に隠された学びの真実

生産効率はどう評価? 「規模の経済性」を考える際には、単に生産量だけでなく、各プロセスの稼働率にも着目することが大切だと感じました。同様に「習熟効果」についても、製造業などでは自然な現象として捉えられている印象です。一方で、平準化と対比される点は意外な発見でした。しかし、昨今の人手不足の現状と、習熟する前にすぐ辞めてしまう現実を考えると、従来の「習熟効果」による改善が難しくなっているのではないかという危機感も抱きました。 多角化のリスクは? また、「範囲の不経済」という概念は非常に興味深く、安易な多角化がこの問題に陥る事例は意外と多いのではないかと思います。 経済性はどちらだ? 一方で、「習熟効果」については理解しやすく、納得感もありました。しかし、目指すビジネスモデルからは「規模の経済性」がかけ離れているため、既存顧客に対するサービスの提供バリエーションを拡大するという観点から「範囲の経済性」を考えるほうがイメージしやすいと感じました。 人件費はどう削減? さらに、人件費削減に関しては、外部調達や生成AIの活用が一つの解決策になり得ると考えています。

データ・アナリティクス入門

実践4ステップで挑む課題解決

問題解決はどう整理? 今回の学びで最も印象に残ったのは、問題解決の4ステップ「What・Where・Why・How」の重要性です。まず、何が問題なのか(What)、どこで問題が発生しているのか(Where)、原因は何か(Why)、そしてどのように解決するのか(How)の4つの視点で問題を整理することで、具体的かつ実行可能な解決策の立案が可能になると感じました。 データ比較はどう考える? また、データを比較する際には、条件をそろえることがいかに大切かを実感しました。この考え方を意識することで、日常業務やプロジェクトにおいても効率的に課題解決に取り組むことができると実感しています。 改善策はどう実行? 特に、業務改善や顧客対応の場面では、今回学んだ手法を活用しやすいと考えています。たとえば、社内の業務フローに滞りが生じた場合、まず問題を明確にし、発生箇所を特定、その原因を分析したうえで改善策を提案し実行する流れが効果的です。今後は、会議や報告の際にもデータ比較を用いて根拠を明確に示し、効率的かつ再現性のある解決策を積極的に実施していきたいと思います。

データ・アナリティクス入門

仮説検証が開く未来への扉

原因究明の方法は? 問題の原因を探る場合、詳細に分けて確認しボトルネックを明確にすることで、問題の把握が容易になると感じました。 A/Bテストって有効? また、A/Bテストの概要とその活用方法について学ぶ中で、短期間で仮説の検証と効果測定が可能であること、さらに実際にある国の大統領選挙でも用いられていた実例から、有用性の高さを実感しました。 顧客接点をどう増やす? 担当顧客をセグメントに分け、各セグメントごとにデジタルを活用して顧客とコミュニケーションの機会を生み出す取り組みも印象的でした。例えば、メルマガ配信では、メールのタイトルや構成が開封率やクリック率にどう影響するかを比較する際に、A/Bテストが効果的に活用できそうだと感じました。 テスト後の活かし方は? 実際にA/Bテストを行う際は、1要素ずつ変更し、同一期間でのテスト実施により正確な効果測定ができるよう学んだ内容を参考に実践しています。実施後は、単にテストを終えるのではなく、振り返りの分析をしっかり行い、その結果を次回のテストに活かすことで、継続的な改善につなげています。

クリティカルシンキング入門

学びを深める!未来のための思考法

知識だけでは足りない? ライブ授業の録画を見て、改めて学びが深まったと感じました。特に最後に先生が言った、「知識を得るだけでは駄目で、自分の頭で考えなければ身につかない。とはいえ、学びを止めてしまうと独断に陥る」という言葉が印象的でした。忙しさを理由に学ぶ機会を持たなければ、自分の経験だけでしか考えられなくなるのではないかと、少し不安を感じました。 本当の学びは何? 改めて学ぶことの重要性を考える機会となりました。 問いは何で始める? 課題の改善策を考える際には、まず問いを立て、問いを忘れないように広い視野を持って検討することが大切だと考えます。対象によって検討内容は変わるかもしれませんが、問いや軸を忘れずに思考することが重要です。 チーム方針はどう? 来年度のチームの基本方針を検討しています。再来年度の変革に向けて、何を変え、何を変えないかを精査する必要があります。よりモチベーション高く取り組めるよう、目標設定や教育機会(研修など)についても今までのやり方を踏襲するだけでなく、広い視野で多角的に検討していきたいと考えています。
AIコーチング導線バナー

「印象 × 改善」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right