クリティカルシンキング入門

データが示す問題解決のヒント

データの切り分けは? データから課題を抽出し、論点を明確にする構造的思考力の重要性を改めて認識しました。これまでの可視化されたデータ作成方法を復習しながら、「問題→要因分析→解決策提案」という一連の流れが実践的であると実感しました。特に、データの分類軸の切り方によって見えてくる内容が大きく変わる点は、今後の業務において有効に活用していきたいと考えています。 担当業務の見直しは? 私の担当する業務は、直接的に顧客データや売上データを扱うものではなく、事業やプログラムの実施および運営が中心です。現在、開始から3年目を迎えるプログラムのさらなる拡充を目指し、これまでの参加者の所属先、部門、所在地、業種などの特徴や、分野別の分析、そして他の類似プログラムとの比較など、さまざまな視点からの検証を進めたいと思います。 改善方法はどうする? また、自身が携わるプログラムの進捗や課題について、これまで限られた範囲で数値化するに留まっていましたが、今後は問題点を明確にし、MECEを意識した分類とグラフ化によって、限られたスペースにより多くの情報を効率的に伝えられる方法を再検討する所存です。作業中に方針がブレないよう、常に意識を高く保ちながら取り組んでいきます。

アカウンティング入門

B/Sで分かる経営の秘密

B/Sの新発見は何? B/Sについては、存在は知っていましたが、業務で具体的に使用することはなかったため、二面から財務状況を把握するという考え方が非常に新鮮でした。流動負債と固定負債という用語にも馴染みがなかったため、まずは自社の事業内容と照らし合わせながら、具体的な分類を再確認したいと感じました。また、業界ごとに資産や負債の比率が大きく異なる点にも驚きを覚え、今後各業界の適正な比率についてさらに学んでいく必要性を強く感じました。 借入状況はどう評価? 借入状況や使用用途が把握できることで、経営状態の健全性をより正確に評価できる資料であると感じました。このため、同業他社の比較やM&A先の企業の財務状況を確認する際にも有用だと思います。業界ごとに異なる資産や負債の比率を見極めながら、理解を深めていくことに大いに価値があると考えています。 自社B/Sの現状は? まずは、自社のB/Sについて、既に状況がある程度把握できている部分から検証を始めたいと思います。現金資産が豊富であると聞いている自社について、そのメリットやデメリットについても明確ではない現状から、資産や負債の内訳に伴うリスクなどを含め、総合的に理解を深めたいと考えています。

アカウンティング入門

図解で広がる学びと戦略の扉

図式の効果は? PL、BS、CSをつなぐ図式は非常に参考になりました。各要素の関係がわかりやすく示されており、文字情報だけでは得にくい理解が深まりました。テキスト情報も大切ですが、図式を効果的に用いることで、知識の習得が一層進むと感じました。今後は、すべての要素を図式化できるよう、各要素のつながりを意識して学習していきたいと思います。 知識活用はどう? 知識そのものは、事業構造や実態の把握に基づいた戦略の提言や予算策定などに活かしていきたいと考えています。その際、利害関係者に分かりやすく伝えることが重要だと感じています。また、部下のレベルアップのために、自分自身が良き指導者となり、効果的な教え方の方法論を身につけていくことも目標です。 議論の進め方は? さらに、業務上で体験した新たな知識を、AIを利用して検証することが好きです。物事の本質を把握し、その意味をAIとのディスカッションで深めることは非常に有効であり、楽しい取り組みです。知らないことや本質、定義が曖昧な知識に気づいた際は、すぐに議論を行うようにしています。これまでは単発的な知識に焦点を当てていましたが、今後は体系化や方法論についても積極的に取り組んでいきたいと思います。

データ・アナリティクス入門

問題解決のための仮説構築法を再確認

仮説構築の重要性を学ぶ 今週は仮説構築の方法を学びました。仮説を立てる際には、複数の仮説を立て、その仮説同士に網羅性を持たせることが重要だと感じました。特に印象に残ったのは、仮説を立案しても都合の良い情報だけに頼らないことです。この点で、チームメンバーにも受講してもらいたいと強く思います。 ミニマム検証の重要性 仮説を立てた後、ヒアリングやアンケートなどを通じてミニマムに検証を行い、そのプロセスを繰り返すことが新規事業の場でも求められます。このことを再確認できました。 検証結果報告の注意点 現在、10月の実証実験に向けて、検証目的や結果の仮説を立案しています。検証結果を報告する際には、都合の良いデータだけを取得し、反論を排除することは絶対に避けたいと感じています。そのため、3C分析や4P分析といったフレームワークを活用し、再度検証結果の仮説立案を試みる予定です。 仮説立案を継続する意義 日々の業務においては、改めて仮説立案を実行し、問題解決の仮説について考えていきたいと思います。具体的には、what、where、why、howといった視点から仮説を再度見直すことで、自分の業務に対する関心や問題意識を向上させようと考えています。

データ・アナリティクス入門

実践で感じたABテストの奥深さ

テスト手法のメリットは? ABテストは、参加者をA群とB群に分け、同時期に検証を行う比較手法であると学びました。この手法は工程が少なく、比較や分析が容易である点が大きなメリットです。しかし、正確な結果を得るためには、比較ポイントを明確に設定し、その他の要素を同じ条件に統一することが重要です。実施時期をずらしたり、多くの異なる要素を入れてしまうと、正確な比較ができなくなるため注意が必要です。 接触率検証の進め方は? 顧客への電話による接触率の検証にもABテストを適用しています。具体的には、予測ツールを用いて算出した接触率が最も高いとされる時間帯と、ランダムに行った場合の接触率を比較することで、予測ツールの効果を測定しています。また、手紙やSMSの文面案についてもABテストを実施し、より効果の高い方法を見極めています。 テストテーマはどう決める? ABテストの導入にあたっては、まずテストのテーマとターゲットを明確に決定することが重要です。テストテーマは業務目標に直結していることを意識し、ターゲットは一つの要素に絞るように確認します。さらに、比較する際には、データ数、期間、手法が全て同一であるよう計画を立て、正確な検証ができるよう努めます。

データ・アナリティクス入門

一歩先行くヒントは4Pにあり

仮説の幅をどう広げる? GAiLで4Pフレームワークを活用することで、仮説の幅を広げる経験ができました。この学びから、3Cや4Pフレームワークを活用し、反復してアウトプットする重要性を改めて実感しました。また、仮説の意義や目的についてもしっかりと学ぶことができ、日常の業務において自ら仮説を持つことの大切さを再認識することができました。 データで何が変わる? 一方で、「平均を算出したり標準偏差を求めたりするひと手間を惜しまない」「必要なデータがない場合は、仮説を裏付けるために自らデータを取りに行く」という点が特に耳に残りました。忙しさを理由に現状のデータだけで問題解決できると考えがちですが、より良い解決のためには、ひと手間をかける姿勢が必要だと感じています。 未来志向の仮説は? これまで、問題解決の仮説を立てる際には、過去のデータに依存する傾向がありました。しかし、現在の業務では将来に向けた視点が求められているため、思考のアプローチを変える必要を感じています。今後は、過去のデータだけに頼るのではなく、アンケートやインタビューなどを活用して新たなデータ取得に努め、4Pフレームワークを用いて幅広い仮説の検証に取り組んでいきたいと思います。

クリティカルシンキング入門

MECE実践!仮説検証で切り拓く発見

データ分析の意義は? データを分析する際には、元のデータをさらに加工できないかを常に考えながら進めることが大切だと実感しました。また、分析が進むにつれて様々な仮説が立てられるため、その仮説をどのように検証するかを考えるプロセスも重要だと感じています。 検証で何を得た? 仮説と検証を繰り返すことで、新たなインサイトを発見できることが分かりました。 MECEの活かし方は? また、データを分けるときには、MECEの考え方を取り入れることで、効率的なデータの分解と分析が可能になると学びました。今日からは、「モレなくダブりなく」の精神を意識したデータの分け方を実践していこうと思います。 報告で工夫する? 社内の業務データをまとめて報告する機会があった際には、これまでのフォーマットに従った報告だけでなく、自分から先んじてデータを加工し、新たな気づきを得る試みを行いたいと考えています。 全体像の捉え方は? 今後は、業務データを扱う際に、全体像を意識しながらMECEの視点を取り入れて課題に取り組むとともに、単一の切り口にとどまらず、層別の変数やプロセスごとに異なる切り口で全体を見渡す意識を持って取り組むようにしていきます。

データ・アナリティクス入門

仮説×検証で広がる未来

仮説と検証はどう? 問題解決の4つのステップの一環である原因の分析について、まず、原因を突き止めるためには仮説を立て、その仮説を実際に検証する必要があります。この検証のために必要なデータを収集し、フレームワークなどを用いて多角的な切り口からデータを引き出すことが大切です。また、解決策の一つとして、WEB上での施策検証に適したA/Bテストが有効です。 データ設計の秘訣は? さらに、現在の課題に必要なデータをどのように設計するかという視点を持つことも重要です。たとえば、共に仕事をするメンバーや経営層に対して、データに基づく裏付けがきちんと説明できるようにすることや、判断を求められた際に感覚的な決断ではなく、しっかりと分析した上で判断できるかどうかを見極める力が求められます。 経験共有の意義は? 皆さんには、業務上で判断に困ったとき、どのようなデータ分析を行って助かったか、あるいは失敗した経験について共有していただきたいと思います。また、最後の最後には勢いも必要ですが、どの程度の分析を行えば十分なのか、自分自身が満足するまで分析すべきか、あるいはどのような基準を持つべきかについて、みなさんと議論してみたいと考えています。

データ・アナリティクス入門

分析で見える!自分の可能性を探る旅

分析目的をどう定める? まず、分析を行うためには、その目的を明確にすることが大切です。分析の核心は、物事を比較することにあります。適切な比較対象を選ぶ際には、「apple to apple」を意識し、時には目に見えないデータとも比較することが求められます。仮説を立てた上で、分析を進めることが重要です。また、分析結果を可視化する際には、その目的を常に念頭に置くことが求められます。 新しい業務の分析に必要な視点は? 新しい業務に取り組む際には、市場規模や競合他社、収支計画など、多岐にわたるデータを使用し、取り組む価値があるかどうかを分析します。コンサルティングなどの導入時においては、従来の定性的な説明に加え、コスト、業務効率化、収益への影響についてデータに基づく分析を行い、より説得力のある説明が求められます。 仕事の本質をどう理解する? 次に、「自分が何をしたいのか」を明確にし、自身の仕事の本質を正確に理解します。その上で、なぜ分析が必要であるのかを整理します。分析を始める前に仮説を立て、その仮説を検証するために必要なデータを収集します。最終的には、分析結果を適切に可視化し、周囲を納得させられるようにすることが重要です。

デザイン思考入門

小さな失敗が大きな変革に

どうしてデザイン思考? ライブ授業の録画を視聴して感じたのは、従来のロジカルシンキングだけでは達成し得なかったイノベーションを、デザイン思考で実現できるのではないかという期待です。特に、ユーザーが抱える潜在的な課題を見える化することで、本質的な課題が明確になるという点に大きな意義を感じました。 どうして顧客不在? また、結果を出せない組織には「顧客(ユーザー)不在」という共通点があると感じています。私の職場では、新しい企画を提案すると「予算は?」「担当は誰が?」、「上層部が賛同しない」といった否定的な意見が次々と出され、そのために改革が進んでいない現状です。厳しい状況下で経営層を巻き込むのは難しいですが、自らの業務の中で「ユーザーは誰か」「どのような喜びを提供できるか」「どんな困りごとがあるのか」を常に意識することが、デザイン思考を活かす第一歩だと考えています。 プロトタイプの効果は? 当面は、自分の担当業務の範囲内でデザイン思考のプロセスを実践していこうと思います。特に、プロトタイプを用いた検証プロセスは、試行錯誤を通じて小さな失敗から学ぶ大きな醍醐味だと感じており、これを繰り返すことで改善を図っていく所存です。

データ・アナリティクス入門

フレームワークが導いた学びの光

原因解析のコツは? what→where→why→howの順に問題を捉えることで、原因解析を体系的に進めやすくなります。フレームワークを利用することで、見落としなく検討でき、説明もしやすくなる点が非常に役立ちます。また、自分自身の思考のクセを理解することで、視野が偏らないよう意識することも大切です。情報分析を通じて、傾向を把握し、結論へと近づくプロセスは非常に有益です。 合意形成の秘訣は? 通常業務の場では、まずイシューを明確にし、その上で他者と合意形成を図ります。次に、多様なアイデアを出しながら仮説を立て、検証を重ねることで、より説得力のある説明が可能になります。単なる常識的な案ではなく、分析結果を生かしながら良い案を生み出すことに挑戦することが重要です。 重要なポイントは? 例えば、コストダウン施策の検討においては、膨大なデータの中からどの部分に着手するかを問い、自分にとって最重要と思われる情報に絞って集中的に分析します。仮説を立て、検証を繰り返す過程は、開発業務と同様の手法で進められます。そして、問題解決のためにどのような手段が最適かを考え、他者にも分かりやすく伝える工夫が、成功へと繋がるポイントとなります。

データ・アナリティクス入門

論理とフレームワークで拓く未来

フレームワーク活用は? 課題に対して仮説を立てる際、4Pや3Cなどのフレームワークを活用することで、これまでの漠然としたアプローチから、より効率的かつ効果的な方法へと進化できることを実感しました。従来の方法と比べ、論理的に整理された仮説構築が可能になり、今後の取り組みに大きな期待を持っています。 客観データで見直す? また、仮説思考においては、反論を排除せずに客観的なデータ収集を行い、都合の良い解釈にとらわれないことが重要だと学びました。仮説が間違っている可能性を認め、検証に基づいた見直しを行う姿勢が、正確な結論に繋がると感じています。 問題解決の切り口は? 今後は、問題解決に向けて複数の仮説を立てる際、フレームワークを活用しながら様々な切り口で検討していきたいと思います。これまで何となく仮説を立てていた点を改め、より具体的かつ体系的なアプローチを心掛けるつもりです。 進行中の分析は? 現在進行中のデータ分析に関しても、今回の学びを活かし、もう一度仮説を立て直して検証を行います。日々の業務において常に仮説と検証のプロセスを意識し、フレームワークの活用に習熟することで、より確かな成果を目指していきます。

「業務 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right