データ・アナリティクス入門

検証が導く次の一手

結果の背景は何? PDCAサイクルにおける「C(Check)」の重要性を改めて実感しました。業務では、A/Bテストの結果が出るとすぐに「採用」と「不採用」の判断に偏りがちですが、なぜその結果になったのかという背景や要因の検証が不足していると、本質的な成果や再現性のある改善につながりません。 結果だけで大丈夫? 自身の業務においても、施策実施後に結果だけを見て結論を出す傾向がありました。しかし、今後は仮説とのずれや背景要因を丁寧に分析し、再現性のある改善策を立てる必要性を感じています。 検証で進化できる? そこで、施策の実施後は必ず検証の時間を確保し、PDCAサイクルの「C(チェック)」を強化することを行動計画に盛り込みます。具体的には、仮説と結果の差異を可視化し、原因分析のためのデータを事前に収集・整理する仕組みを整え、定期的な振り返りの場で結果の背景を多角的に検証します。これにより、直感や思いつきに頼らず、根拠ある意思決定を進めていきたいと考えています。

データ・アナリティクス入門

データ分析の新たな視点を学んで気づいたこと

新たに学んだ加重平均とは? 加重平均を新たに学びました。外れ値がある場合に平均値で表せないことは感覚的には理解していましたが、加重平均を用いて計算したことはありませんでした。また、成長率についても単純に年数分の成長を年数で割るものではないと知っていましたが、直感的にすぐに計算できる方法を知りませんでした。このため、幾何平均も新たに学びました。 学んだ方法の活用を考える 現在の業務では、前年比を用いており、今回学んだ方法を使用する場面はほとんどないと考えています(会社的に求められていない)。しかし、個人的な興味や研究として、各種費用の値上げ率を幾何平均で算出し、物価上昇率との相関を見てみたいと思います。 個人的な興味とデータ分析 会社としてのアウトプットは求められていませんが、個人的な興味として、学んだ手法を各種データに当てはめて試してみるつもりです。これにより、これらのデータ分析が本当に不要なのか、それとも必要なのに見落としているのかを検証してみたいと思います。

データ・アナリティクス入門

仮説とデータで見える未来

仮説思考はなぜ必要? 仮説思考の大切さを改めて実感しました。日々得られるファクトに対して「なぜ?」や「どうすれば良いか?」と疑問を持つ中で、あらかじめ仮説を設定することで業務上の疑問点や関心事に対し、より具体的なアプローチが可能となり、結果として業務の精度が上がると感じました。 データの活かし方は? また、データ収集においても、ただ数多くの情報を集めるのではなく、データの特性を十分に理解した上で、絞り込んだ活用を行う必要性を感じました。実績の分析に際しては、例えば「この時期だから売上が伸びないのか」や「この季節だから売り上げが良いのか」といった視点で、状況を整理することが有効でした。 記録の意義は? さらに、手元にあるデータやメモを活用し、気になった点や疑問点を記録しておくことは、仮説の検証や業務改善に直結する重要なプロセスであると感じました。日々その記録を見返しながら自問自答を繰り返すことで、自分なりの解を持ち、分析を重ねる姿勢が身に付いたと思います。

データ・アナリティクス入門

仮説で輝く成長ストーリー

仮説ってどう捉える? 今回の学習を通じて、仮説の意味や分類、そしてその意義について理解が深まりました。仮説とは、ある論点に対する仮の答えであり、主に二つの分類に分けられると知りました。一つは、論点に対する仮の答えを示す「結論の仮説」、そしてもう一つは、具体的な問題の解決を推進するための「問題解決の仮説」です。 仮説意義はどう? また、仮説を考えることの意義として、検証マインドの向上やそれに伴う説得力の強化、関心や問題意識の向上、スピードアップ、行動の精度向上が挙げられることを学びました。これまでこれらのポイントを特に意識することはなかったものの、今後はこれらを意識しながら仮説を活用していくことが大切だと感じました。 印象は何が響く? 特に印象に残ったのは、「仮説を考えることの意義」についての内容です。日々の業務において、検証マインドの向上、問題意識の深化、スピードアップ、そして行動の精度向上を意識して対応することで、より効果的な問題解決が図れると確信しました。

データ・アナリティクス入門

数字が紡ぐ多角的な気づき

計算方法はどう違う? 他者による分析データでは幾何平均や標準偏差に触れる機会はありましたが、以前は計算式に苦手意識を感じていました。今回、単純平均や加重平均と併せて用いることで、データのばらつきや分布が視覚的に理解しやすいことを実感しました。また、分析結果同士の比較において要素が細分化され、読み解く幅が広がることも理解できました。普段目にするデータの背後には巧妙な仕組みが潜んでいることを再確認し、背景にある意図をより慎重に読み取ろうという意識が芽生えました。 部署ごとの傾向は? 担当しているダイバーシティ推進の取り組みでは、アンケート結果が全社的にポジティブな回答に偏る傾向が見受けられました。しかしながら、ネガティブな回答は特定の部署に偏っている可能性もあります。回答者の部署や性別などの属性に注目することで、異なる視点からの分析が可能になると感じました。こうした多角的な検証を通じ、部署ごとの業務特性やジェンダーバイアスなどの要因が明らかになることが期待されます。

データ・アナリティクス入門

数字が語る学びの秘話

代表値の使い方は? 代表値の計算方法として、単純平均、加重平均、幾何平均、中央値のアプローチがあることを再確認しました。日常の業務では状況に応じて使い分けているものの、特に幾何平均は実際に計算する経験がなく、大変勉強になりました。また、データのばらつきを捉えるための標準偏差を使った比較も初めて試み、今後の分析に役立てたいと感じました。 分析結果はどう活かす? 研修成績やサーベイ結果の推移やばらつきを把握し、傾向や特徴を見出すために、今回学んだ代表値の計算方法やビジュアライゼーションが非常に有効だと考えます。まずは、データを確認する前に、点数が上昇している場合と下降している場合の仮説を立て、その上で属性ごとに単純平均を用いて比較を行います。さらに、人事制度などとの関連付けを行う際には、特定の部署の比重を増やす加重平均や、前々回分のデータを反映した幾何平均を導入することで、目的に合った多角的なアプローチを実現し、仮説の検証や次の分析ステップへとつなげていきます。

データ・アナリティクス入門

比較と検証で切り拓く未来

分析の見極めポイントは? Week1を振り返って、「分析は比較なり」という言葉が強く印象に残りました。正確な分析を行うために守るべき要点を改めて認識するとともに、仮説と検証を繰り返すことの重要さを実感しました。 業務での分析とは? 実際の業務シーンでは、以下のような場面でデータ分析の手法を活用しています。病院のデジタル推進におけるデータ分析、サーバ性能やトラブル発生時の問題解決、新サービス導入時のサーバ負荷試験に関する見解、また、LINEや無呼吸ラボ、近隣検索、PCPへのファネル分析、アクセス数やページビューの分析など、さまざまな事例に取り組んでいます。 分析習慣の秘訣は? 日々の業務においては、勘や経験則だけに頼ることなく、データ分析に基づいた意思決定を行う習慣を身につけることが重要だと感じています。問題が発生した際には、What、Where、Why、Howの視点で現状を整理し、的確な対策を講じるために、仮説と検証を繰り返す姿勢を大切にしていきたいです。

データ・アナリティクス入門

仮説思考で切り拓く成長への道

仮説検証はどう進む? 問題解決に取り組むためには、複数の仮説を立て、それぞれを短いスパンで検証することが大切です。仮説設定の際には、3Cや4Pといったフレームワークを活用することで、より多角的かつ論理的にアプローチできると感じました。 固執をどう克服する? 私自身の業務では、課題に直面すると日々の経験に左右され、一つの可能性に固執してしまう傾向がありました。仮説はあくまで出発点であるため、複数の視点から検討する姿勢が重要だと学びました。今後は、対策を立案する前に一度立ち止まり、慎重に仮説を設定することで、論理の偏りや抜けを防ぎ、より精度の高い対策に結びつけたいと思います。 書き出す仮説の意義は? また、分析の材料となるデータ収集に先立ち、まずは課題に対する仮説を書き出すことが基本であると感じました。3Pや4Cのフレームワークを利用し、俯瞰的に課題を捉えることで、決めつけに陥らずに検証・結果のプロセスを慎重に実行する姿勢が大切だと再認識しました。

クリティカルシンキング入門

業務の精度を高めるMECE活用法

MECEの考え方をどう活用する? MECEの考え方について振り返ると、これまでにモレやダブりが数多くあったと思います。まずは全体を定義し、そこから分解する癖をつけていきたいです。その中で自分の分け方を確立させ、スムーズな業務の遂行に役立てたいと考えています。 建設業界でのMECEの利用法とは? 建設業界では、現場で工事を進める際に様々な工法があります。その中で現場の条件に合った最適な工法を選択する必要があります。この時、MECEの考え方を取り入れて、全体を定義(納期、価格、敷地の条件など)し、細かく分解することで、重視するポイントを把握し、適切な工法を選択できると思います。 分解と記録の習慣をどう身につける? 私自身、物事を細かく分析する習慣がないため、まずはある程度結果が見えたとしてもMECEを意識した分解を行い、全体をくまなく検証する癖をつけたいと思います。また、その過程を記録に残し、振り返りを行う事でプロセスの定着を図っていきたいです。

戦略思考入門

戦略実践で武器に変える学び

戦略思考はどう整理する? 戦略思考とは、明確なゴール設定と、その達成のための戦略を検討するプロセスを意味します。まずは現状を正しく把握し、目標までのギャップを理解することが重要です。さらに、フレームワークを活用して思考を体系的に整理し、実行すべき事項とそうでない事項を判断軸で区別することがポイントだと改めて整理できました。 学びはどう身につく? また、Week1からの振り返りの中で、学んだ内容が既に忘れられている点に気付くとともに、忘れる=身についていないという認識に至りました。そのため、意識的に実践を重ね、自分の武器として定着させたいと考えています。 業務実践はどう進める? せっかく学んだフレームワークも、業務で実践しなければ忘れてしまう恐れがあるため、常に活用可能なフレームワークはないかを意識して実践していくつもりです。今後は、新規受注の成功事例や失注事例を、3C分析やSWOT分析を用いて検証し、次の打ち手の検討に結び付けたいと考えています。

戦略思考入門

実例で学ぶ戦略フレームワーク活用術

フレームワークの活用に自信が持てるようになった理由は? これまでも戦略について検討した経験はありましたが、微妙にずれている話をまとめるのが得意ではありませんでした。また、フレームワークについても知識としては持っていましたが、実際に使いこなすことには自信がありませんでした。この講座を通じて、フレームワークを実例として使うイメージがわき、今後の業務に活用できると考えています。 中期計画で考慮すべきポイントは? これから中期計画を立てるにあたり、考慮すべきポイントをフレームワークに沿って検討し、各項目ごとに抜け漏れがないかをチェックしながら、整合性の取れた計画づくりに取り組んでいきたいと思います。 サプライチェーンの視点をどう活かす? 地域に関連する方針を固める際には、サプライチェーンの観点も今回初めて加えてみたいと思いました。また、SWOT分析を基に改めて会社の強みを検討し、どの分野で競争優位が得られるかを論理的に検証していきたいと考えています。

データ・アナリティクス入門

問題解決を極める!MECE活用法

問題解決プロセスはどうする? 問題解決のステップであるWhat/Where/Why/Howを実施する際、MECE(モレなくダブりなく)に留意して問題を切り分け、明確化することは、普段の業務でも自然に行っています。しかし、これを改めて整理すると、より理解が深まることを実感しました。 部下の問題対応をどう支援する? 実務においても、問題に対してモレなくダブりなく切り分けて明確化し、要因分析を行えているかを確認したいと考えています。部下から日々さまざまな問題が報告される中で、この点が確実にできているかを検証し、対策をまとめるサポートをしていきたいと思っています。 部門内の案件をどう分析する? 直近で部門内で問題となっている案件を選び、それぞれの担当者がどのように問題の要素分析を行い、どのような検討を経て対策を導き出しているのかを確認したいと考えています。特に要素分析の段階でMECEをしっかりと実施できているかを重視して見ていきたいです。

「業務 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right