クリティカルシンキング入門

MECE実践!仮説検証で切り拓く発見

データ分析の意義は? データを分析する際には、元のデータをさらに加工できないかを常に考えながら進めることが大切だと実感しました。また、分析が進むにつれて様々な仮説が立てられるため、その仮説をどのように検証するかを考えるプロセスも重要だと感じています。 検証で何を得た? 仮説と検証を繰り返すことで、新たなインサイトを発見できることが分かりました。 MECEの活かし方は? また、データを分けるときには、MECEの考え方を取り入れることで、効率的なデータの分解と分析が可能になると学びました。今日からは、「モレなくダブりなく」の精神を意識したデータの分け方を実践していこうと思います。 報告で工夫する? 社内の業務データをまとめて報告する機会があった際には、これまでのフォーマットに従った報告だけでなく、自分から先んじてデータを加工し、新たな気づきを得る試みを行いたいと考えています。 全体像の捉え方は? 今後は、業務データを扱う際に、全体像を意識しながらMECEの視点を取り入れて課題に取り組むとともに、単一の切り口にとどまらず、層別の変数やプロセスごとに異なる切り口で全体を見渡す意識を持って取り組むようにしていきます。

データ・アナリティクス入門

分析で見える!自分の可能性を探る旅

分析目的をどう定める? まず、分析を行うためには、その目的を明確にすることが大切です。分析の核心は、物事を比較することにあります。適切な比較対象を選ぶ際には、「apple to apple」を意識し、時には目に見えないデータとも比較することが求められます。仮説を立てた上で、分析を進めることが重要です。また、分析結果を可視化する際には、その目的を常に念頭に置くことが求められます。 新しい業務の分析に必要な視点は? 新しい業務に取り組む際には、市場規模や競合他社、収支計画など、多岐にわたるデータを使用し、取り組む価値があるかどうかを分析します。コンサルティングなどの導入時においては、従来の定性的な説明に加え、コスト、業務効率化、収益への影響についてデータに基づく分析を行い、より説得力のある説明が求められます。 仕事の本質をどう理解する? 次に、「自分が何をしたいのか」を明確にし、自身の仕事の本質を正確に理解します。その上で、なぜ分析が必要であるのかを整理します。分析を始める前に仮説を立て、その仮説を検証するために必要なデータを収集します。最終的には、分析結果を適切に可視化し、周囲を納得させられるようにすることが重要です。

デザイン思考入門

小さな失敗が大きな変革に

どうしてデザイン思考? ライブ授業の録画を視聴して感じたのは、従来のロジカルシンキングだけでは達成し得なかったイノベーションを、デザイン思考で実現できるのではないかという期待です。特に、ユーザーが抱える潜在的な課題を見える化することで、本質的な課題が明確になるという点に大きな意義を感じました。 どうして顧客不在? また、結果を出せない組織には「顧客(ユーザー)不在」という共通点があると感じています。私の職場では、新しい企画を提案すると「予算は?」「担当は誰が?」、「上層部が賛同しない」といった否定的な意見が次々と出され、そのために改革が進んでいない現状です。厳しい状況下で経営層を巻き込むのは難しいですが、自らの業務の中で「ユーザーは誰か」「どのような喜びを提供できるか」「どんな困りごとがあるのか」を常に意識することが、デザイン思考を活かす第一歩だと考えています。 プロトタイプの効果は? 当面は、自分の担当業務の範囲内でデザイン思考のプロセスを実践していこうと思います。特に、プロトタイプを用いた検証プロセスは、試行錯誤を通じて小さな失敗から学ぶ大きな醍醐味だと感じており、これを繰り返すことで改善を図っていく所存です。

データ・アナリティクス入門

フレームワークが導いた学びの光

原因解析のコツは? what→where→why→howの順に問題を捉えることで、原因解析を体系的に進めやすくなります。フレームワークを利用することで、見落としなく検討でき、説明もしやすくなる点が非常に役立ちます。また、自分自身の思考のクセを理解することで、視野が偏らないよう意識することも大切です。情報分析を通じて、傾向を把握し、結論へと近づくプロセスは非常に有益です。 合意形成の秘訣は? 通常業務の場では、まずイシューを明確にし、その上で他者と合意形成を図ります。次に、多様なアイデアを出しながら仮説を立て、検証を重ねることで、より説得力のある説明が可能になります。単なる常識的な案ではなく、分析結果を生かしながら良い案を生み出すことに挑戦することが重要です。 重要なポイントは? 例えば、コストダウン施策の検討においては、膨大なデータの中からどの部分に着手するかを問い、自分にとって最重要と思われる情報に絞って集中的に分析します。仮説を立て、検証を繰り返す過程は、開発業務と同様の手法で進められます。そして、問題解決のためにどのような手段が最適かを考え、他者にも分かりやすく伝える工夫が、成功へと繋がるポイントとなります。

データ・アナリティクス入門

論理とフレームワークで拓く未来

フレームワーク活用は? 課題に対して仮説を立てる際、4Pや3Cなどのフレームワークを活用することで、これまでの漠然としたアプローチから、より効率的かつ効果的な方法へと進化できることを実感しました。従来の方法と比べ、論理的に整理された仮説構築が可能になり、今後の取り組みに大きな期待を持っています。 客観データで見直す? また、仮説思考においては、反論を排除せずに客観的なデータ収集を行い、都合の良い解釈にとらわれないことが重要だと学びました。仮説が間違っている可能性を認め、検証に基づいた見直しを行う姿勢が、正確な結論に繋がると感じています。 問題解決の切り口は? 今後は、問題解決に向けて複数の仮説を立てる際、フレームワークを活用しながら様々な切り口で検討していきたいと思います。これまで何となく仮説を立てていた点を改め、より具体的かつ体系的なアプローチを心掛けるつもりです。 進行中の分析は? 現在進行中のデータ分析に関しても、今回の学びを活かし、もう一度仮説を立て直して検証を行います。日々の業務において常に仮説と検証のプロセスを意識し、フレームワークの活用に習熟することで、より確かな成果を目指していきます。

クリティカルシンキング入門

事実を分解して新たな発見を

数字は何を示している? 数値や事実を分解することで、新たな事実が見えてくると同時に、その解像度を上げることができると感じました。この際、特に意識すべきは「切り口」であり、仮説や目的をもって複数の視点から事実を確認することが重要です。自分は、ある傾向にすぐ飛びついてしまい、その先の検討を十分に深められていなかったため、今後はどんな傾向が見えても多角的に事実を検証するよう努めたいと思います。 現状の原因は何? また、企画立案の際も、ありたい姿と現状のギャップを埋めるために、事実を分解して原因を追求する手法が有効だと感じます。現状の事実がなぜ生じたのかを明らかにするために、事実を細分化し、多角的に確認することは重要です。実際、直近では、社員向けに業務と介護のリテラシー向上を図る施策の検討において、現状確認のために事実を分解して捉える作業を進めており、どのようなデータを収集すべきかも併せて検討しています。 業務改善の秘訣は? さらに、進行中の業務に取り組む中で、早速「分解」に意識を置いた事実確認を試みています。この施策で得た経験をもとに、他の業務においても同様のアプローチを活用できるようにしていきたいと考えています。

戦略思考入門

効率的な優先順位で成果を最大化

リソース投資の重要性とは? 仕事の優先順位を決める際、時間や労力といった個人のリソースに対する投資対効果を考慮することが重要です。特に、個々の業務や顧客への投資対効果が低い場合、対応を中止する決断も必要であることを学びました。リソースの数値化は難しいですが、スケジュールに記録することで可視化できます。 会議参加の優先順位のつけ方 現在、私は企画の業務として、研究部隊の様々な会議に招集されています。しかし、全てに参加する必要はなく、研究部隊が十分に対応できることも多いです。企画側から依頼する研究テーマや、研究進捗報告の会議は今後の重要な方向性を決める場であるため、必ず参加します。そのため、会議への参加は能動的に優先順位をつけたいと思っています。 講演会やセミナー参加時の判断基準 会議に出席するかどうかをまず検討し、優先度の高い業務があればそれを優先する意向を上司に報告します。また、個人で調査業務を行うため、講演会やセミナーに参加することも多いです。その際、聞きたい内容があるか、講師の専門性によって自分の検証事項に関連する情報が得られるかどうかを考慮して投資対効果を見積もり、参加を検討したいと考えています。

データ・アナリティクス入門

実践が教える仮説検証の極意

検証手法は有効? 問題原因を明らかにし、仮説検証の手法を学びました。A/Bテストを活用して施策の比較を行い、検証条件を可能な限り統一することの重要性を実感しました。例えば、AM・PMや平日・休日といった環境の違いは、検証対象以外の要素が判断に影響を及ぼす可能性があるため、広告などではランダム表示を取り入れることで正確な評価ができると考えています。 現場実践と課題は? 業務の現場では、店舗出店など莫大な費用と時間を要するケースが多く、テスト環境の確保が難しいのが現状です。しかし、勤務状況や労務上の課題に関しては、実践の機会が得やすいため、身近な課題に対して継続的な取り組みを重ね、自身の中でフレームワークを構築していくことが重要だと思いました。 日々の計画はどう? また、仕事に限らず、収入と出費などの身近なテーマでも問題意識を持つことが大切です。まだ十分にMECEの視点で物事を分析できていないため、さまざまなケースにおける要素分析を行い、知識をストックしておく必要があると感じました。さらに、全体の時間軸を意識して日々の業務計画に落とし込むことで、突発的な対応を極力減らしていきたいと考えています。

データ・アナリティクス入門

仮説を飛び出せ!実践が拓く未来

学びの流れは? 実践演習を通して、What→Where→Why→Howの流れを学べた点が非常に印象的でした。実際の感想文を読むと、学んだ内容が具体的にどのように役立つかが実感でき、理解が深まったと感じました。 仮説と現実のギャップは? また、仮説の正しさに固執せず、世の中の結果を生み出す要因が複数絡んでいるという現実に納得しました。仮説を立てた段階で行動に移すことの重要性を強く感じ、その姿勢が実務でも大切だと理解できました。 複雑な要因は何故? さらに、複雑な要素が絡み合う中でWhyが必ずしも一つではないという点にも気付かされました。MECEに分類しながら仮説を立て、個々の要因を一つずつ検証していくプロセスは、仕事に応用するには手間がかかると感じました。しかし、説得力を持たせるためには、従来の仮説以外の理由を排除する作業が重要であることも学びました。 実務にどう生かす? この経験からは、仮説以外の可能性をいかに排除していくかという点が、MECE思考の力に直結していると感じました。本から得たフレームワークを活用し、実際の業務で実践することで、さらに思考力を高めていけると確信しています。

データ・アナリティクス入門

多角的な視点で挑む数字の謎解き

なぜ一案に固執しない? まず、今回最も学んだのは、あらゆる可能性を考慮し、単一の仮説に固執しない分析の大切さです。たとえ一つの数字が上下したとしても、その変動の要因を丹念に探ることが、次の一手を効果的に打つためには必要不可欠であると感じました。 どうして検証が偏った? 業務上、多くの数字を扱う中で、変化の原因を憶測だけで判断してしまっていたことに気づきました。実際、決め打ちした仮説に基づく検証に偏り、他の可能性を最初から除外していたため、十分な検証ができない場合がありました。今後は、ある要因が数字の変動に影響していると考えた際に、同じ要因が別の状況でも現れているかどうかを比較し、分析の基本である比較の原則に立ち返って検証していきたいと考えます。 なぜ多角的に議論する? さらに、仮説を立てた後すぐにデータ分析に入るのではなく、他に考えられる仮説や視点がないかあらゆる角度から検討することが重要だと再認識しました。特に、一人では気づかない視点も存在するはずなので、複数人でデータを見比べる必要性を感じています。そのため、早速4月からは、より多角的に意見を交わせる組織体制に変更できるよう動いています。

データ・アナリティクス入門

分解で掴む業務改善のヒント

どこにボトルネック? 問題の原因を明らかにするには、業務プロセスを分解して、どの段階にボトルネックがあるかを特定することが重要だと学びました。実務ではインターネットを活用した営業を行っていないため、A/Bテストは実施しませんが、同一期間・同一条件下で検証項目を比較するという手法は、他の場面でも十分に応用できると感じました。 セグメントはどう見る? 自部門で伸び悩んでいる事業についても、まずは問題の原因究明に取り組み、適切な対応策を検討する必要があると考えています。そのため、部門内で営業セグメントごとに実績を分析し、各セグメントの問題点を洗い出した上で、具体的な対策を立案・実施し、再度分析するというサイクルを構築したいと思います。 対策はどう実施? 具体的には、3月末時点でのセグメント別業績データをもとに、前年度と当年度の成長率を比較します。低迷しているセグメントについては、問題の原因を徹底的に分析し、翌年度に向けた対策をまとめ実行します。その後は、各四半期ごとに進捗を検証し、現状を把握するとともに、必要に応じて追加の対策を講じるという業務改善の仕組みを根付かせることが目標です。

データ・アナリティクス入門

実践的経営戦略のスキルアップの魅力

経営戦略の立案方法を学ぶ 今回の講義では、実践的な経営戦略の立案手法について学びました。テキストや動画だけでなく、具体的な事例を交えた説明が非常に分かりやすかったです。特に、組織の強みと弱み、市場の機会と脅威を分析するSWOT分析の手法の紹介は、今後の業務に大いに役立つと感じました。 グループディスカッションの有用性 また、グループディスカッションを通じて他の受講生と意見を交換することで、新たな視点や洞察を得ることができました。このプロセスを通じて、理論だけでなく実践的なスキルも身につけることができました。 具体的なフィードバックの重要さ さらに、講師の具体的なフィードバックにより、自分自身の考え方に対する自信も深まりました。特に、自分たちが立案した戦略がどのように成功するか、仮説の立て方や検証方法に関する深い理解が得られたことは大きな収穫です。 オンライン学習の利点とは? 最後に、オンライン学習の利点として、自分のペースで学べるという点が大きいと感じました。忙しい日常の中でも、柔軟に時間を使って学習を続けることができました。これからも学びを深め、実務に活かしていきたいと思います。

「業務 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right