デザイン思考入門

試しながら感じた生成AIの可能性

業務活用はどう進む? 生成AIを業務に活用する動きが進む中、まずは自分の業務で試してみることが大切だと感じています。たとえば、直近ではOpenAIの新しいモデルに関して、ハルシネーション率が高いとされるため、o4-miniを使ってその数値を表にまとめる取り組みを行いました。 混在は何故起こる? しかし、OpenAIのモデルであるにもかかわらず、GPT-4o-miniとo4-miniが混在した表が作成され、そのままでは利用できない結果となりました。ベンチマークでは高いスコアが出ているものの、正確性の面では改善の余地があると実感しました。 試行の価値は? また、生成AIは手軽に試すことができるため、積極的に利用する価値があると感じています。さらに、AIエージェントやGraph RAGといった技術も提案されており、これらを自分自身で実践することが重要だと改めて認識しました。

データ・アナリティクス入門

洞察が導く実践の軌跡

ABテストの注意点は? ABテストは、広告制作や新商品のパッケージ調査など、クリエイティブの評価でよく用いられる手法です。実際の業務で使用していたためなじみがありましたが、条件を揃える部分で見落としがちな点があるため、実践時は特に注意しなければならないと感じました。 打ち手比較の意義は? また、打ち手の比較に関しては、単なるデータ分析にとどまらず、業務上の課題解決のための思考パターンとしても応用可能だと実感しました。物事の意思決定における「比較」は、非常に重要なプロセスであると改めて認識しました。 課題継続検証は? 業務では常に課題が発生するため、まず現状を把握し、比較のためのデータを精査しながら継続して検証することが重要だと考えます。さらに、プロセスを細分化して仮説を立て、実際に試していくというルーティンを、どの状況においても意識して取り組んでいきたいと思います。

クリティカルシンキング入門

実践力が即戦力に!ケーススタディの効果絶大

業務に活かせる実践的学習とは? 学習内容が非常に実践的で、即座に業務に応用できる点が素晴らしかったです。特に、ケーススタディを通じた学びが深く、現実のビジネスシーンにおいても非常に有益であると感じました。 難しい点はどのように克服する? また、講義の進行がスムーズでわかりやすく、講師の方々の説明も丁寧で具体的でした。疑問点に対するフォローも充実しており、安心して学習を進めることができました。 他の学習者とどう交流する? さらに、同じように学ぶ仲間とのディスカッションや交流も刺激的で、新たな視点を得ることができました。オンラインという特性を活かして、さまざまな地域から参加している方々と意見交換できる点も魅力的でした。 総じて、このプログラムを通じて自身のスキルアップだけでなく、新たな人脈を築くことができ、大変満足しています。これからも継続的に学び続けたいと思います。

データ・アナリティクス入門

数字から見える学びの世界

データの傾向は見えますか? データはビジュアル化することで多くのことが見えてくると感じています。そこで、まずは業務の件数や週平均、月平均などの数値を確認し、どのような傾向があるのか把握することから始めたいと思います。 年次データのばらつきは? 次に、年単位でのデータをヒストグラムに落とし込み、ばらつきや偏りがあるのかを検証してみたいです。年代ごとの偏りから、ある種のマーケティング施策が影響しているのではという仮説を立てることができ、実践演習で学んだ知識が非常に役立ちました。 平均値の使い分けは? また、単純平均だけでなく、加重平均や幾何平均など、状況に応じた平均値の使い分けが正しい分析につながるということを再認識しました。さらに、数字のばらつきを評価するために、標準偏差のような指標を実際の業務データで算出し、その計算方法や数字の感覚を磨いていきたいと考えています。

データ・アナリティクス入門

アンケート成果を活かすデータ分析術

アンケート設計のコツは? デジタル化を進めるにあたり、今後お客様アンケートを実施する予定があります。今週学んだことを活かして、アンケートの集計に役立てたいと考えています。アンケートには定性的および定量的な質問がありますが、定量的な質問に関しては、単に平均値のみでなく、中央値や最頻値も確認し、傾向やばらつきを把握することが重要です。質問を設計する際には、事前に仮説を立て、それを証明するための最小限の質問を設定することが求められます。 結果報告の工夫は? まずは直近のアンケート業務で学びを実践し、集計後にはそれをもとに報告を行う予定です。その際には、結果をどのようにビジュアル化して示すかを考慮します。単純に平均値や最も多い回答を示すだけでなく、仮説に基づいたアンケート設計により、得られた結果から示唆を引き出し、それに基づいて施策をストーリーとして検討することが大切です。

クリティカルシンキング入門

業務効率アップの鍵を見つけた日

受講内容の価値とは? 受講した内容は非常に有益で、自分の視点を一段階広げてくれました。特に、問題解決のためのフレームワークを学ぶことで、日々の業務に対するアプローチを再評価する機会が得られました。この学びを活用し、今後はもっと効率的に仕事を進めていきたいと考えています。 実践的な知識はどう活かす? また、講義中に紹介された事例は非常に具体的で、自分の業務にも即座に応用できると感じました。このような実践的な知識は、理論だけでは得られない深い理解をもたらしてくれます。特に、チームでのコミュニケーションやリーダーシップに関する部分は、大いに参考になりました。 チーム成長のための次のステップ ここで学んだことを基に、自分自身だけでなくチーム全体が成長できるよう、今後も努力を続けていきます。この講義が提供する価値は非常に高く、受講して本当に良かったと思います。

クリティカルシンキング入門

クリティカルシンキングで視野を広げるコツ

伝え方はどうする? クリティカルシンキングにおいて、課題解決と他者に納得感を持ってもらえるように伝えるコミュニケーションが重要であることを深く学びました。特に、自分自身を俯瞰して見る視点が、クリティカルシンキングを実践する上で非常に大切だと感じました。 視点をどう広げる? 具体的には、日々の業務の中でのプロジェクトやミーティングにおいて、会議資料を作成したり意見交換を行ったりするときに、自分を俯瞰することを心掛けています。これにより、「3つの視」すなわち視点、視座、視野を広げる思考法を意識して取り組むことができると考えています。 思考をどう整理? さらに、「3つの視」を意識しつつ、ただ思いつくままに書いたり話したりするのではなく、MECEの考え方を活用しながら客観的な思考を習慣づけ、他者とのディスカッションを通して反復トレーニングを試みたいと思いました。

データ・アナリティクス入門

段階的アプローチで着実成長

講義で何を実感した? これまでの講義を通じて、分析のフレームワークや思考の順番をしっかりと理解することができました。段階を追って課題を解き明かすことで、最初から一気に取り組むよりも、より複雑な問題に対処できると実感しています。 課題設定はどう進む? データ分析の業務では、ただ急いで分析を実施するのではなく、まず解決すべき課題を明確にし、仮説を立てながら進めることが大切だと感じます。また、必要に応じてデータを扱う関係者と意見交換しながら検証を進めることで、より確実な結果にたどり着けると思います。 日々の工夫は何? 今後は、学んだフレームワークや仮説検証の流れを自分の言葉で他者に説明し、日々の業務に取り入れる工夫をしていきたいと考えています。小さな実践を積み重ねることで、自分の思考プロセスが自然に身につき、学びを習慣化できるよう努めていきます。

クリティカルシンキング入門

問いが拓く新たな視野

本当の考えは何? 思考を整理するために、まず自分の考えに対して「本当にそれで良いのだろうか? 他の可能性はないか?」と問いかけることの大切さを学びました。この方法により、普段の考えにもう1人の自分を加え、視野を広げる手法の有効性を実感しました。 別の切り口は? また、3つの視点とMECE的な分析を取り入れることで、物事を多面的に見るスキルが向上しました。具体的には、求人広告の改善提案など仕事において、普段と異なる切り口でアプローチし、複数の改善案を迅速に提示できるようになる効果を感じています。そのため、自分の思考に対して常に「なぜその選択をするのか」「他の案はないか」を問い続ける習慣を身につけることの重要性を改めて認識しました。 次はどう実践? この学びを今後の業務や日常の問題解決に活かし、より多角的かつ柔軟な思考を実践していきたいと考えています。

デザイン思考入門

アイデアの種が芽吹く瞬間

ブレインストーミングはどう? ブレインストーミングは、取り組みやすい手法だと感じました。個人でも実践できるとのことで、日々の業務のなかから一つ以上の要素を抽出し、それに対して自分なりの改善点をたくさん考えてみることができそうだと思いました。 SCAMPER法はどう? また、実践演習ではSCAMPER法を用い、普段意識しない視点から物事を考える機会が得られました。十分に洗練された状態のものに対しても、「もっと削れないか」や「代わるアイデアはないか」といった異なる視点から検討することで、さらに良い結果が生まれる可能性を実感しました。 どうやって大量発想する? 単純なアイデア出しであっても、やみくもに考えるのではなく、さまざまな手法があることを学びました。いずれにしても、最初はアイデアの量を重視し、まずはたくさんの考えを出すことに専念しようと思います。

クリティカルシンキング入門

整理で見つける新しい視点

情報整理の目的は? 情報整理の基本として、まずは「何のために整理するのか」という目的をはっきりさせ、その上で情報を細分化し、必要に応じて加工することの大切さを学びました。その後、細かく分けたデータをグルーピングし、要約する「So What」や根拠を示す「Why So」により、情報の意義や本質を明確にするプロセスに取り組みました。さらに、全体を漏れなくかつ重複なく整理するMECEの考え方もポイントとして意識しています。 イシューの見極めは? 業務においては、イシューを的確に特定し、チーム内で共通認識を持つことが不可欠であると実感しています。また、データを加工して細分化することが、より精度の高い分析につながるため、日々の業務で実践しています。この学びは、コンサルティングの現場で求められるクリティカルシンキング力の向上にも大いに寄与すると考えています。

クリティカルシンキング入門

目的意識で切り拓く日々の学び

目的を忘れたくない? 行動や結果の改善にばかり意識が向くと、そもそもの目的を忘れてしまいやすいです。しかし、クリティカルシンキングの受講においては、常に受講目的や業務の目的を念頭に置きながら、日々の学習を積み重ねることができました。 問題解決の秘訣は? なぜこの問題を解決するのか、解決する必要があるのかといった、目的に立ち返る姿勢で日々の業務を整理しました。進むべき方向性を定めた後は、どのように解決すべきか、これまで解決が難しかった原因は何かをしっかりと捉え、具体的な打開策を考えることに努めました。 毎週の実践成果は? また、毎週テーマを決めて実行することで、インプットがアウトプットに変わり、アウトプットがさらにインプットを磨くというサイクルを意識的に積み重ねました。常にどの方向に進むための日々の習慣を作る目的を忘れずに取り組むようにしました。

「業務 × 実践」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right