データ・アナリティクス入門

受講生が実感する学びの変革

目標はどう意味づけ? 目標設定は、データ分析のみならず、学び全般にとっても非常に重要だと再認識しました。受講前に描いていた理想像よりも、学びを終えた今の自分は実践できることが増え、単なる分析のプロから、ビジネス現場で分析手法を効果的に活用するプロへと成長できたと感じます。 活かし方はどうして? この学びは、日常のあらゆる業務に活かしていきたいと思います。データ分析の知見が、問題解決や新たな施策の立案に大いに役立つと理解したため、業務全体でその手法を意識していくつもりです。 従来手法は適切? また、現在の担当業務を見直すことで、従来の方法が本当に適切であったのか、見逃している課題はなかったのかを改めて点検していこうと考えています。その結果を踏まえ、今回の受講で得た実体験の知見を活かし、今後必要となる知識やスキルの習得にも取り組んでいきたいです。

クリティカルシンキング入門

会議が迷走しない視覚化テクニック

日常業務における課題意識は? 日常業務や会議において、「何のためにやっているのか」「何が課題であるのか」を忘れてしまうことが多いと改めて感じました。適切な問いを立て、それを押さえ続けながら業務を遂行することの大切さを理解しました。 業務の視覚化が必要な理由は? 業務上の課題に対しては、何が課題なのかを考え、それを明確にしたうえで向き合うことが重要です。しかし、会議などの場面では話がそれることが往々にしてあります。そうした場合、視覚化し、目的がぶれないように周知することが求められます。 プロセスをどう視覚化する? 問いを立て、明確にし、それを押さえ続けること。このプロセスを視覚化し、個人的にもまた他者と関わる仕事の場合には他者にも視覚化し周知することで、目的の達成や業務効率化につながると感じました。実際に実践し、行動に移していきたいと思います。

クリティカルシンキング入門

まとめ動画で見つけた次への一歩

復習は本当に効果的? 今まで学んだ動画や講義メモを総復習する機会となりました。記憶が薄れていた部分もあったため、まとめ動画がとても参考になりました。学習中には気づけなかった点も、再度動画を視聴することで明確になり、実際に手を動かして自分で考えることで、気づきの視点が一層深まったと感じました。 視点の切り替えはどう? また、アウトプットの見せ方についても、自分の業務の打ち合わせなどで活かせると実感しました。全体を俯瞰して何を話しているのかを他者に伝えることが難しいと感じていたため、今回の学びが自分の課題解決のヒントとなりました。 新環境でどう活かす? 今後は、4月頃までは学んだことを整理しながら自分の業務にどう適用できるかを考え、5月からの新しい環境でもクリティカルシンキングを共通言語として実践し、即戦力として貢献していきたいと思います。

データ・アナリティクス入門

仮説思考が拓く成長の扉

仮説思考はどう活かす? 講座を通じて、仮説思考の重要性を再認識しました。仮説思考を持つことで、日々の業務やビジネスにおいて、身近なヒントに気づきやすくなり、柔軟な発想ができるようになりました。 原因分析のポイントは? また、原因分析においてはMECEの考え方や、3Cや4Pといったフレームワークを活用する手法を学びました。一つの仮説に固執せず、多角的な視点から原因を検討することで、初めの仮説を超える重要な要因や、否定すべき可能性に気づくことができると実感しました。 再発防止策はどうする? さらに、仮説思考を実践する中で、一点に執着せず常に広い視点で多くの仮説や原因を想定することが、トラブル対応や再発防止策の検討において非常に役立つと感じています。原因の究明を意識しながら、適切な再発防止策を講座で学んだ知識を活かしていきたいと考えています。

データ・アナリティクス入門

妥協を捨てた学びの軌跡

現状の問題確認は? 問題を特定する際は、What、Where、Why、Howの観点から確認する重要性を改めて感じ、ABテストの存在も初めて認識しました。また、分析を進める中で「このくらいでいいや」という気持ちを捨て、徹底的に考え抜くことの大切さを実感しました。 企画実行はどう? 自ら企画を立案する際も、同じ観点で問題を明確にし、仮説を立て、データに基づいた検証を徹底することが必要だと考えます。そうすることで、企画の実行可能性が高まり、周囲からの賛同も得られると感じています。 学びをどう活かす? これまで学んだ内容を丁寧に振り返り、積極的な実践を心がけたいと思います。業務が繁忙になると学んだことをおろそかにしがちですが、本講義で得た知識を振り返り、日々の業務にどのように適用できるかを考える時間を常に確保していきたいです。

データ・アナリティクス入門

見えない価値を探る学びの場

目に見えぬリスクを感じる? 既に目に見える情報だけでなく、目に見えない要素にも着目する大切さを学びました。たとえば、帰還していない飛行機の状況を考えることで、現状からだけではなく、潜在的なリスクや可能性についても想像する力が養われると感じました。また、出版される経営に関する本は、その裏付けとして成功しているという実績があることに共感を覚えました。 数字に秘めた戦略は? 一方、私の業務は既存のデータをまとめ、数字や報告資料に反映させるという作業が中心です。そのため、現時点ではこの学びが直接的に業務に活かせるとは感じられていません。しかし、今後、毎月提出する経営会議用の資料に予測や分析を加えることで、より深い洞察が業務の判断材料になり得ると考えています。特に、条件を比較しながら推測を行うことで、より実践的な分析が可能になると期待しています。

戦略思考入門

フレームワークで広がる戦略の未来

どのフレームワークを使う? 戦略を考える際に有効なフレームワークについて学び、3C分析、SWOT分析、PEST分析、バリューチェーン分析といった手法を実際に目に見える形で整理する方法を学びました。実践的な使い方も教わったので、早速分析に取り入れてみたいと考えています。 対話で見落とし防げる? また、クライアントとの対話においても、これらのフレームワークを活用することで、話し合いながら整理し、見落としを防ぐことができると感じました。このプロセスを通じて、より効果的な提案ができるのではないかと思います。 どう戦略スキル向上する? 現在、ひとりで業務を進める中でクライアントワークに専念しているため、戦略を考える機会は限られています。今後は、まずフレームワークを使ってしっかりと分析を行い、戦略立案のスキルを高めていきたいと思います。

データ・アナリティクス入門

仮説と実践で拓く最適解

プロセス改善の秘密は? 問題解決のステップの枠組みを学ぶ中で、複数の切り口から解決策を検討するプロセスを整理する方法の大切さを実感しました。各プロセスごとに重要点に沿って仮説を立て、判断基準を明確にすることで、より的確な解決策が導き出されると感じました。また、A/Bテストを活用した検証手法からは、有効性の高い方法を見出す「実践的な知識」を得ることができ、今後の業務に大いに役立つと考えています。 アンケート改善のヒントは? 顧客アンケートを実施する際には、回答率向上のためにA/Bテストを導入し、仮説を立てながら改善点を洗い出すプロセスを試してみたいと思います。具体的には、EDMやイベント等を活用する方法の有効性を検証し、アンケート収集方法の効率化および精度向上に繋げることで、実務に直結する解決策を見出すことができると期待しています。

データ・アナリティクス入門

数字の裏側を読み解く学び

データ深堀の意義は? 今回はこれまでの総括に加え、データを深堀するプロセスを順を追って学ぶことができました。目の前の数字を鵜吞みにせず、どのように分解できるかを都度確認することの重要性を再認識すると同時に、思い込みだけで動かないというデータ分析の基本を実感しました。 現場課題解決の鍵は? AIコーチングからは、実際の業務でどのようにデータを切り分け、仮説を立てて検証するプロセスを実践すべきか、また分解したデータをもとに現場の課題解決に直結するアクションプランをどのように構築するかという問いかけがありました。具体的には、まずKPIや社内で多くの方が注目している数字を切り分け、仮説の構築に取り組むべきと考えています。アクションプランについては、課題に応じて、自分の立場から現実的に着手できるものを見極めることで構築できると感じています。

アカウンティング入門

数字だけじゃなく実像を読み解く

財務の見方はどう? 今回の学習で、業種や企業の特性に応じた財務諸表の読み方が変わることを実感しました。単に数字を見るのではなく、それぞれの企業の特徴を踏まえて仮説を立てながら財務諸表に向き合うことで、より深い理解が得られると感じました。 実践で力をつける? 具体的には、CVCの業務において、投資先やアライアンス先企業の財務諸表を詳細に分析し、企業の強みや弱みを把握する手法や、日経新聞などで注目している企業の情報をもとに投資判断や戦略の立案に活かす方法を学びました。また、実際に特定の企業の財務諸表を基に予想を立て、実態との比較検証を行うサイクルを実践することの重要性を再確認しました。さらに、学んだ内容を上司や同僚に報告してフィードバックを受けることで、実践的な知識をさらに深め、業務に生かしていこうという意欲が高まりました。

クリティカルシンキング入門

新しいデータ分析手法で業務効率化に成功!

データ加工の基本技術とは? データの加工の仕方、分け方の工夫、分解の注意点の3つを学びました。特に注意が必要だと感じたのは、分け方の工夫と分解の注意点です。手を動かしてそれらしいデータが見えた際にすぐに結論を出してしまうと、誤った判断に繋がる可能性があると感じました。 商談データ分析の新アプローチ? 私の業務では、特に商談や受注に関するデータの分析を担当しています。これまでとは異なる切り口でデータを集計し、同時に新しい仮説をもとにデータを分解してみることは、すぐに実践できそうです。 仮説を活用したデータの再確認 商談や受注データの吸い出しを行う際には、常に新しい仮説を持って取り組むことが重要です。そして、一見それらしいデータが見えても、一段階深く集計の漏れや新しい切り口、データの正確性を再確認することが必要です。

アカウンティング入門

リーダーシップが劇的に向上!ナノ単科の魅力

リーダーシップスキルの向上 ナノ単科の受講から得られた知識は、私の日常業務に非常に役立っています。特に、リーダーシップのスキルを向上させるための様々な理論や実践的なアプローチを学ぶことができました。また、講義内容がリアルなビジネスシーンに即しているため、即座に実践に移せる点が魅力です。 職場での実践が成果を生む? さらに、学んだことをすぐに職場で応用することで、チームのモチベーションや生産性の向上にも貢献できました。受講前は解決策が見つからなかった問題に対しても、新しい視点からアプローチできるようになり、確実に成果が出ています。 キャリアへの影響と今後の展望 全体として、ナノ単科を通じて得られた知識とスキルは、私のキャリアにとって大きな財産となりました。今後も継続的に学びの場として活用していきたいと思います。

「業務 × 実践」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right