データ・アナリティクス入門

データ分析の基本を押さえる重要性

データ分析の本質とは何か? データ分析は「比較すること」が本質であり、常に「Apple to Apple」と適切なもの同士を比べる重要性を学びました。これを達成するためには、実際の分析に移る前に、分析の目的を明確にし、仮説を立てることが大切であると感じました。 仮説の質をどう改善する? データ分析の前提整理や仮説を立てることには既に意識を持ちつつありますが、仮説の質にはまだ改善の余地があると考えています。データ分析を行った結果、自身の仮説が間違っていることに気づき、仮説を立て直すことが多々あります。経験を重ねることで一定の改善は見られるかもしれませんが、体系的に仮説を立てる方法を学びたいと思っています。 効果的な振り返り方法は? 振り返りをきちんと行い、適切な比較対象が選ばれていたのか、仮説がしっかり立てられていたのか、データ分析の目的が明確に言語化されていたのかを確認することが重要です。脳内でチェックリストを作り、それを基に実践し、反復練習を積むことが必要であると感じています。

クリティカルシンキング入門

データ分析の偏りをどう排除するか考えた末に

思考の偏りをどう減らす? 普段から思考が偏らないように意識しているものの、自分のアウトプットには偏りが多いことに気づきました。その偏りを減らすために、複数人でのディスカッションは有用だと思いますが、一人の時でもそれを実践できるように努力を重ねていきたいです。 クリティカルシンキングの実践法は? 私は仕事の中で顧客のデータを扱うことが多く、そのデータを分析してインサイトを導出する際に思考の偏りが現れることがあります。ディスカッションを通じてその偏りをある程度排除できますが、会議の時間をより効率的に使うためにも、個人レベルでクリティカルシンキングを実践し、思考の偏りを排除することが重要だと感じました。 日常で能力を活用するには? 私は仕事の中での能力活用を目指しているため、普段の生活の中からクリティカルシンキングの練習をしたいと考えています。ニュースを見たりネット記事を読んだりする際に、一度取り入れた情報を反芻し、より幅広い視点で考え直すことで、それが達成できると思います。

データ・アナリティクス入門

視覚化で輝く数値のストーリー

平均値の限界は? 平均値は計算が容易で意味も通じやすいことからよく用いられますが、ばらつきの情報が考慮されていないため、正しい情報を得る上では限界があります。代表値だけではデータ全体を俯瞰し、妥当性を確認するのが難しいため、データのビジュアライズ化が重要だと感じます。 なぜ見せる工夫が必要? 受領したデータの全体像を把握するため、代表値の算出に加え、ビジュアライズ化を実施することにしています。普段はExcelを使用し、関数を活用して代表値を手軽に算出しているため、この作業の頻度は高いです。しかし、ビジュアライズ化は目的を踏まえた「見せ方」を検討する過程があるため、どうしても敬遠しがちです。そこで、この工程も積極的に実施するよう努めています。 効率化はどのように? また、代表値の算出を効率化するために、算出用の雛形シートを作成し、使い回せるように準備しておきます。ビジュアライズ化については、データ確認結果を部内で共有する際に、誰にでも説明しやすい資料作成を心がけています。

クリティカルシンキング入門

データの魔法で問題解決力が飛躍

イシュー設定の重要性は? イシューの設定によりデータの見方が変わることを実践を通じて理解しました。問いの形式で設定すると共有が容易になるため、答えを出すことが問題解決に直結し、仕事の本質とも一致しています。問題解決の真因に迫る問いを設定し、その後、スキルを駆使してロジカルに分析を進める必要があります。 専門人材育成の秘訣とは? 事業計画の作成時には、社会の課題解決、つまりイシューの設定を行います。また、専門人材の育成においては、相手の要望や期待に偏らないようにし、ビジョンに沿った結果を出すための企画を練ることが重要です。 MECEのチェックは欠かせない? ソリューション開発・提案においては、根本的な解決事項の抽出にこの考え方を応用します。そして、自身が設定した目的・問いについては必ず二度確認し、MECEになっているかをチェックします(これはよく抜けがちです)。視座を高めるためには、経営者の視点で物事を捉え、少なくとも指導を受けるチーフと同じ視点で考えることを意識します。

データ・アナリティクス入門

受講生が語る学びの鼓動

平均と分布、どう考える? データの平均値を見る際には、数値の散らばりも把握することが大切です。また、代表値を選定する時は、元データの傾向を十分に理解し、適切な判断を下す必要があります。やみくもな分析に陥らず、常に仮説を組み立てる姿勢が求められます。 分析法はどうあるべし? 分析を進める際は、まず利用可能なフレームワークを用いて仮説を明確にし、必要なデータが不足している場合は自ら収集するなどの努力が必要です。数字の根拠に基づいたストーリー構築が重要であり、グラフを効果的に活用することで、視覚的にもデータの傾向を把握できます。 仮説はどこから? リサーチの機会は多くありますが、その前プロセスを軽視せず、解決すべき問いと対応する仮説をしっかり持つことが肝心です。仮説検討時には、使えるフレームワークを積極的に取り入れることで、的確な分析が可能になります。 分析目的は何? 何のための分析なのか、その目的を常に明確にしながら、説得力のあるストーリー作りに努めることが求められます。

クリティカルシンキング入門

小さな問いから生まれる大発見

問いの本質は何だろう? はじめに、「問い」とは何かを確認することが重要です。求められる答えの背景には、表面には現れない前提が存在するため、十分な擦り合わせがなければ正しい解答にたどり着くことは難しいです。主張を固める際は、その要素を分解し、論理的な根拠で埋めていく方法が求められます。 目的意識はどう伝える? 次に、データの加工や各種フレームワークを用いて主張を説明する際は、常に目的を意識する必要があります。たとえば、店舗の取り組みを従業員に周知し実行してもらう場合、目的・目標、そして根拠を明確に伝えることが重要です。課題表の作成も、この順番で進めると効果的です。 研修の根拠は何? さらに、新入社員の教育担当も行っており、その経験が研修方法にも生かされています。下準備が多く必要ではありますが、経験則や感覚に頼った研修では新入社員の再現性が低くなるのではないかと懸念していました。そこで、マニュアルに記載された各行動の根拠を分解し、根本的な理由から丁寧に説明することに努めています。

戦略思考入門

可能性を活かすための戦略的思考

物事を捨てる選択は正しいか? 戦略的に物事を捨てることの重要性を再認識しました。業務において「捨てる」という選択は、可能性を手放すことと同義になる場合もあります。しかし、実践演習で経験したように、ROIなどの定量的指標を用いて優先順位をつけることが重要だと感じました。 顧客の優先順位をどう付ける? 実践演習で学んだ内容を活かして、顧客の優先順位付けを行い、どの顧客を優先的に訪問することで営業利益を最大化できるかを考えたいと思います。これまでは、過去の売上や顧客の規模で大まかに仕分けをしていましたが、今後は他の数値を参考にしながら、ROIを高めるために組織運営を進めていきたいと考えています。 データ分析で得られるものは? 数値分析を進めるにあたり、社内でどのようなデータが利用可能か、またどのように計算できるかを一次情報に基づいて分析したいと思います。さらに、現在行っている業務やサービスを洗い出し、無駄や不要なものが残っていないかをゼロベースで再検討していきたいと考えています。

データ・アナリティクス入門

条件そろえてわかる分析の極意

分析の基本って何? 「分析は比較なり」と「分析条件は揃える(apples to apples)」という考え方を、改めて言語化し再認識する機会となりました。分析の目的を明確にすることの大切さを改めて感じ、普段当たり前に使っている言葉やアクションが、人に説明する際に十分に簡潔な言葉で表現できていなかった点に気づくことができました。 分かりやすい伝え方は? この気づきのおかげで、自分が実際に行動する際や他者に伝えるときに、より明確で分かりやすい表現を心がけるようになりました。また、分析やデータ収集設計に取り組む際は、比較のための軸が整っているか、条件が一致しているかをしっかり確認することが必要だと感じました。 設計と準備はどう整う? たとえば、データ収集設計を行う中で、ユーザー単位なのかセッション単位なのかといった視点を明確にすることが重要です。こうした点について、どのような設計や準備が効果的か、皆さんと意見を交わしながらさらなる検討を進めていきたいと考えています。

データ・アナリティクス入門

ロジックで描く理想への一歩

現状と理想の差は? 問題解決には、これまで「正常なあるべき姿」とのギャップを埋める施策が主流とされてきたが、実は「現在の正常な状態」から「ありたい姿」へのギャップを埋めることも、立派な問題解決だという点に気が付きました。 アイデアは何で生まれる? アイデアを生み出す際には、ロジックツリーのようなフレームワークを用いることが重要だと感じました。ただし、そのためには意味のある切り口が不可欠で、切り口となるパターンの数は経験によるところが大きいと考えています。 ロジックはどう活かす? また、現在社内で生じている問題に対して、ロジックツリーを用いて「WHY」と「How」を整理したいと思いました。これまで、あるべき姿と現在の状況を数値で示すことが難しい(もしくは手間がかかる)ため、取り組みが進まず、結果として抽象的な対策案に終始していた印象です。今後は、数値化したデータを基にロジックツリーを活用することで、より具体的で幅広い施策を検討できるのではないかと感じています。

データ・アナリティクス入門

データを読む力で広がる新視点

数字の壁は本当? データ分析に関して、「数字が得意でないとできない」という思い込みがありましたが、実際にはデータの読解力が重要だと感じました。データと情報を比較することで状況を把握しやすくしたり、意思決定をしやすくする手法の一つとして、どのような目的や仮説で分析を行うのかが最も重要な根幹部分であることに気づきました。 旅行動向はどう? 具体的な例として、訪日旅行観光客の市場動向と顧客行動の把握があります。どの国からの訪日観光客が増えているか、減っているか、滞在日数、1人当たりの消費額、訪問都市やその数、そして訪日旅行に求めていることや課題について分析しました。 立ち位置はどう評価? 会社が策定している中期経営計画の目標達成のためには、訪日旅行という分野において、自社が業界内でどのような立ち位置や状態になるべきかを明確にする必要があります。そして、その状態を達成するために必要となる情報やデータを考慮し、どのような戦略を打ち出すべきなのかについて検討することが求められます。

クリティカルシンキング入門

振り返りから始まる学び筋トレ

授業振り返りの視点は? week1の授業はとても新鮮な印象を受けたものの、具体的に何を行ったのかはすぐには思い起こせない部分もありました。しかし、学習は常に振り返りながら継続することが大切だと強く感じています。クリティカルシンキングについては、筋トレと同じように、継続して実践し、活用する場面を増やしていく必要があると考え、今後の生活に取り入れていきたいと思っています。 実務に学びはどう活かす? また、これまで学んだ学習ポイントを仕事で活かすことは非常に重要です。具体的には、以下の点を心がけています。 ・課題に対して常に「問いは何か」を意識すること。 ・問いに対する打ち手を考える際、キーメッセージとそれを支える根拠を必ずセットで示すこと。 ・問いや打ち手を検討する際、データを単に眺めるのではなく、加工や分類を工夫しながら取り扱うこと。 ・日本語では主語と述語の使い方に注意し、資料作成時には色彩や矢印など、相手にどう伝わるかを考えたレイアウトを心がけること。

データ・アナリティクス入門

仮説が照らす新たな一歩

結論と解決をどう見極める? 仮説には、論点に対する一時的な答えとしての「結論の仮説」と、具体的な問題解決を推進する「問題解決の仮説」があるという考え方があります。複数の切り口から仮説を立て、そこから焦点を絞っていくことで、決め打ちせず柔軟に検証を進めることができます。 仮説と検証はどう活かす? このアプローチにより、検証マインドや説得力、問題意識が自然と向上し、分析のスピードおよび行動の精度が高まると感じています。たとえば、営業活動の最適化を図る際には、既存のデータから読み取れる情報に加え、どのようなデータがあれば反論を排除できるかを考慮した仮説を設定し、必要なデータを収集することが重要です。 BI導入で何を学ぶ? また、BIツールを活用した経営ダッシュボードを作成する際は、単に事実を表示するだけでなく、社員が仮説を立て行動につなげられるよう設計する工夫が求められます。納得してもらえる仮説の立て方を学ぶことが、効果的な分析や営業活動の最適化に直結すると実感しています。
AIコーチング導線バナー

「重要 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right