0%
あと3分で読了
point-icon この記事のポイント!
  1. 平均値に散らばり考慮せよ
  2. 仮説と根拠固めを徹底せよ
  3. 目的明確で説得力示せ

平均と分布、どう考える?


データの平均値を見る際には、数値の散らばりも把握することが大切です。また、代表値を選定する時は、元データの傾向を十分に理解し、適切な判断を下す必要があります。やみくもな分析に陥らず、常に仮説を組み立てる姿勢が求められます。

分析法はどうあるべし?


分析を進める際は、まず利用可能なフレームワークを用いて仮説を明確にし、必要なデータが不足している場合は自ら収集するなどの努力が必要です。数字の根拠に基づいたストーリー構築が重要であり、グラフを効果的に活用することで、視覚的にもデータの傾向を把握できます。

仮説はどこから?


リサーチの機会は多くありますが、その前プロセスを軽視せず、解決すべき問いと対応する仮説をしっかり持つことが肝心です。仮説検討時には、使えるフレームワークを積極的に取り入れることで、的確な分析が可能になります。

分析目的は何?


何のための分析なのか、その目的を常に明確にしながら、説得力のあるストーリー作りに努めることが求められます。
※上記の投稿は、受講生より許可を得て掲載しています。

関連記事

論理力とは?20代ビジネスマンのための具体的トレーニング法 external link

人気記事

help icon

ナノ単科とは?

実践につながる基礎スキルを習得するカリキュラム
グロービス経営大学院 単科生制度の、さらにライトなプログラムが登場。
1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。

ナノ単科受講生の声

この記事と同じ科目を受講したナノ単科受講生のリアルな感想をご紹介します。
avatar
R.M
20代 女性 一般社員/職員
受講科目
データ・アナリティクス入門
実践につながる 学習習慣が身に付く 仲間と学び合える

総合演習でデータ加工を実践できると思ったのですが、筆記のみだったので、今までの学びが身についたか試せなかったのは少し残念です。
ポータルの話でいうと、一度見た動画を早送り・巻き戻しできないのは不便でした。

avatar
A.S
30代 女性
受講科目
データ・アナリティクス入門

良かった点
データ分析の前提の考え方、意識すべきことが体系的に学べた。
違う業種の人の意見が聞けたのも貴重な機会だったと思う。

気になる点
口コミ通りといえばそうだが、想像していたよりも実践的なことは割と少なかった印象がある。
アプリやページの不調があったのが気になった。
また、グループワークはテーマによってグダグダ感が出てしまった時があった。

avatar
Y.M
30代 女性
受講科目
データ・アナリティクス入門
実践につながる わかりやすい モチベーションが上がる

大変有意義な1.5ヶ月でした。データ分析を学びたい!と飛びつきましたが、課題解決スキルが根本的に重要であり、その中でデータ分析がどう活かされるか?の流れを実践とともに学びました。
育児と仕事との学びの両立に苦戦しましたが、なんとか食らいついてよかったです!ありがとうございました。

「データ・アナリティクス入門」を受講した方の学び

データ・アナリティクス入門

理論と実践が織りなす学び

なぜステップを守る? 何か課題に取り組む際や提案を行う場合、まずwhat、where、why、howの各ステップを丁寧に踏むことが重要です。直感的に「how」へ飛びつくのではなく、問題を段階的に捉えることで、的外れな解決策を防ぎ、他者への説明時にも説得力を高めることができます。 データと妥当性は? また、データを用いた分析を行う際には、比較しているデータが正確かどうかを慎重に確認する必要があります。手元にあるデータだけで安易に分析を進めず、必要なデータが不足していないかを常に考慮しなければ、分析結果の信頼性や価値が損なわれる恐れがあります。 目的はどう決める? 顧客向けのイベント提案やその他の分析の場面でも、まずは分析の目的を明確に設定しなければ、意味のある分析にはなりません。分析は問題解決の一手段に過ぎず、その結果をどのように伝え、活用するかはまた別に検討する必要があります。 結果はどう解釈? 発表の機会の有無にかかわらず、分析を行った場合は、目的、何をどのように比較したか、結果のビジュアル化、そしてその結果から目的に対して何が言えるのかを明確に言語化することが求められます。こうしたプロセスを踏むことで、次なる改善提案へとつなげることが可能となります。

データ・アナリティクス入門

数字で読み解く学びの秘密

原因はどこにある? 原因や要因を明確にする際は、どの点が、何の理由で、どのように影響しているのかといった具体的な結論をイメージすることが大切だと感じます。また、データを多面的に捉え、細かく分解することで思考の幅を広げることも重要です。 数字は何を伝える? さらに、傾向や新たな発見を見出すために徹底的なデータ分析を行い、数字の根拠に基づくストーリーを構築する姿勢が不可欠です。グラフなどのアウトプットのイメージを具体的に持つことも、分析の質を高めるために有効です。 表示形式は整ってる? 一方で、アウトプットのイメージが十分に形成できていないと感じる場面もありました。実際、クライアントから単に羅列されただけのデータを受け取り、分析を進めた結果、見積もりから内諾につながったケースもありました。しかし、分析時に見やすい表示形式にできていたかについては自信を持てず、残している分析の履歴を見ても、納得しきれない部分がありました。 提案はどう構築する? また、クライアントはデータの整理や分析が十分にできず、どうにかしてほしいという要望を抱えていました。そのため、単にデータを読み解くだけでなく、ストーリーや見やすいアウトプットをあらかじめ意識しておく必要があると実感しました。今後は、この講座で学んだ内容を活かし、より説得力のある提案ができるよう心がけたいと思います。

データ・アナリティクス入門

実務で磨く!アウトプット思考の極意

実践的分析はどう進む? データ分析に関する実践的かつ体系的なアプローチを学ぶことができ、非常に実りある体験でした。講義では、What、Where、Why、Howの各ステップを意識しながら、網羅的に仮説を洗い出すことの大切さを学び、単なるやみくもなデータ分析とは一線を画す考え方を身につけることができました。 完成像をどう描く? また、アウトプットのイメージを初めから持つことにより、分析の質とスピードが劇的に向上する点にも気付きました。実務では、しばしば情報が断片的に扱われがちですが、最初から完成形を描くことで、全体の流れや数字、目的に合致したグラフ作成、さらには数式化まで一貫して対応できるようになりました。 仮説検証で何変わる? さらに、店舗オペレーションの検証や改善を行うチームでの業務において、さまざまなフレームワークや5つの分析視点を活用し、仮説と検証を徹底する重要性を再認識しました。自分自身のアプローチに偏りがあったことを改善し、チーム全体でナレッジを共有しながら、組織力を向上させる意識が高まりました。 理論と実践の架け橋は? 全体として、実践的な分析方法を通じて、理論と現場の架け橋となる知識とスキルを確実に身につけることができ、大変満足しています。

データ・アナリティクス入門

受講生が語る学びの鼓動

平均と分布、どう考える? データの平均値を見る際には、数値の散らばりも把握することが大切です。また、代表値を選定する時は、元データの傾向を十分に理解し、適切な判断を下す必要があります。やみくもな分析に陥らず、常に仮説を組み立てる姿勢が求められます。 分析法はどうあるべし? 分析を進める際は、まず利用可能なフレームワークを用いて仮説を明確にし、必要なデータが不足している場合は自ら収集するなどの努力が必要です。数字の根拠に基づいたストーリー構築が重要であり、グラフを効果的に活用することで、視覚的にもデータの傾向を把握できます。 仮説はどこから? リサーチの機会は多くありますが、その前プロセスを軽視せず、解決すべき問いと対応する仮説をしっかり持つことが肝心です。仮説検討時には、使えるフレームワークを積極的に取り入れることで、的確な分析が可能になります。 分析目的は何? 何のための分析なのか、その目的を常に明確にしながら、説得力のあるストーリー作りに努めることが求められます。

データ・アナリティクス入門

学びの先に広がる未来

知識活用はどうする? これまで自己研鑽してきた内容について、ただ知識を積み重ねるだけでなく、具体的にどのように活用するかまで考えてこなかったと実感しました。すぐにはイメージしにくい現実の場面で、学んだ知識がどう生かされるかを真剣に考えることで、新たな視点が得られると感じています。そのため、単なる習得にとどまらず「学習の先」をじっくり考える時間を持つことの大切さに気づかされました。 データの見直しはどう? また、直近ではデータ分析の作業に直接関わることはありませんが、自身が担当する事業におけるさまざまなデータについて再度整理する必要性を感じています。どのようなデータが存在し、どのように収集され、どのような活用方法(結果の仮説)が考えられるのかを洗い直すとともに、これから集めるべきデータについても検討し、具体的な収集方法を年度末までに模索し、準備を始めることができるのではないかと思いました。

データ・アナリティクス入門

学びの裏側に迫るリアル本音

非利用者の声は本当に大事? 利用者のデータだけに頼らず、非利用者の声を拾い上げることの重要性を改めて実感しました。非利用者の意見はクレームのような強い反応がなければ表に出ないことが多いため、顧客インタビューや知人への聞き込み、掲示板、SNSでのエゴサーチなど、さまざまな方法を活用して本音を引き出す工夫が必要です。 KPIとKGIの違いは何? また、KPIが達成されている状況でも、目標(KGI)に直結していない場合があると感じます。外部要因など読み切れない複雑な要素が絡むため、実績や自身の勘を基に、総合的な結果を見極める判断力が求められると感じました。 AI時代で自己価値はどう表す? さらに、AIの脅威が広がる中で、自分自身の価値をどう伝えるかが課題です。「この人に任せたい」という信頼感を得るには、説得力と人間力を磨く必要があると実感し、そのためにも日々多くの業務をこなすことの重要性を再認識しています。 モチベ維持の秘訣は何だろう? 加えて、モチベーションを維持するためには、SNSなどを活用して目標や実績をシェアし、周囲の反応から刺激を受ける環境が効果的だと感じました。各種の取り組みを通じて、自分自身の成長とチームの目標達成に繋げていきたいと思います。

人気記事

「受講生が語る学びの鼓動」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right