データ・アナリティクス入門

目的と仮説で切り拓く新世界

なぜ比較が大切? 今回の授業で改めて学んだのは、「分析は比較なり」という考え方と、目的や仮説を持って取り組む姿勢の重要性です。データ分析の根幹となるこの考え方は、今後の講義や業務の現場で常に意識して取り入れるべきだと感じました。 意見交換で何を得る? また、授業中にパソコンを購入する際の調査項目や、自身が望む条件について話し合った際、他の受講生の様々なアイデアが非常に参考になりました。この経験から、自分の考えに固執せず、複数の視点から意見交換を行うことのメリットを実感しました。 業務で分析のコツは? さらに、データ分析の考え方は業務においても広く応用できると考えています。例えば、ある業務プロセスにおいて不具合の解決を目的としてデータやプロセスを分析する際、目的や仮説を明確にすることが問題解決への近道になると感じています。 普段からデータ分析に携わっている方には、業務で分析を進める中で直面する課題や、その解決方法についてぜひお伺いしたいと思います。

データ・アナリティクス入門

問いと仮説が導く学びの軌跡

仮説思考の始まりは? 常に目的意識を持ち、問いを立てることから仮説思考は始まります。まずは、何を知りたいのか、どんな結果を期待するのかを明確にしてから仮説を立て、必要なデータを集めて分析を行います。こうしたプロセスが、分析作業において無駄を省き、効率よく目的に近づくための鍵となります。 グラフ作成のポイントは? また、グラフなどの可視化資料を作成する際も、まず仮説や伝えたいメッセージ、そして対象となる相手を意識することが大切です。誰に何を伝えたいのかを明確にして、伝わりやすい構成でグラフを作ることで、情報の意味が正しく伝わります。 新たな発見はどう? さらに、問いを発見する一助として、最新の研究結果や知見に触れることが有効です。たとえば、研究論文を読む機会を増やしたり、仲間から新たな情報を得るなど、日常的に情報収集に努めることが求められます。説明資料を作成する際も、自分が何を伝えたいのかを整理し、論理的かつ簡潔な表現でまとめることが重要です。

データ・アナリティクス入門

データ分析の新視点を見つけた瞬間

データ分析の重要性再確認 ライブ授業で教わった「データ分析は比較である」ということや、目的に沿った分析が重要だという点は、今までの経験から理解していたつもりでした。しかし、動画で出てきた愛の値段の計算や補強すべき部分の選択などの設問に答えることができなかったため、自分にはまだできていないことが多いと気づかされました。 比較視点をどう持つか? プロジェクトや業績の実績評価の際に、他の競合や他の例と比較して報告することができたら良いと思いました。「Apple to Apple」の比較対象を探すことは簡単ではありませんが、比較がないよりは評価や分析が深まるはずですので、挑戦したいと考えています。 比較癖をつけるための方法 結果や業績などの数字を見た際に、必ず他と比較する視点を身に付けることが重要です。何と比較して良かったのか、標準はどのくらいなのかを自分で確認するようにし、その比較対象があることでどのような見え方になるのかを考える癖を付けたいと思います。

データ・アナリティクス入門

思考が変わる!分析への新挑戦

新たな視点って何? 短い期間ではありましたが、今まで知らなかった新たな視点と、分析の基礎的な部分に取り組む機会を得ることができました。この経験により、従来エクセルでグラフを作成することだけが分析だと思っていた意識を改める大切なきっかけにもなりました。 切り口をどう見る? また、改めて切り口や最終的に求める結果を明確に認識する重要性を実感しました。言われたことをこなすのは当然ですが、それだけでなく、どのような追加の分析が可能か、現在の活動がフレームワーク上で重複していないかを考えるようになりました。 未来の分析はどう? さらに、サイトなどを通じて他の場所での売り上げ分析の出し方を学び、今後自分が目指すべき方向性を掴む機会にもなりました。分析は過去のデータを用いることが一般的ですが、未来を見据える分野での活用を考える際、歴史上の革命と呼ばれるタイミングで起きた出来事を参考にすることで、役立つ知見を得られるのではないかという考えに至りました。

データ・アナリティクス入門

平均だけじゃ見えない学びのヒント

平均値の弱点は? ビジネスや日常生活のさまざまな場面で代表値として利用される平均値ですが、実は大きな弱点があります。平均値はデータのばらつきを反映しておらず、同じ平均値でも、データの大半が平均値に近い場合もあれば、極端に大きな数値と小さな数値で構成され、平均に近い値が存在しない場合もあるのです。 重要要素は何? 苦情処理以外でもデータを活用する可能性は十分にあります。これまで、インフォメーションのヒットワールドでは似たような事例がいくつか見受けられましたが、どの要素が最も重要なのか、またすべてのデータを採用するのは現実的ではないと感じています。したがって、状況に応じてデータの加工が求められるのでしょう。 問い合わせ改善は? 一時的に問い合わせ内容を収集し、お客様が特に関心を寄せる内容を反映することで、その部分のサービス提供に工夫を凝らす考えです。さらに、第三者にこのデータを提供し、PADなどに入力することで、案内の効率化が期待できるでしょう。

データ・アナリティクス入門

データ分析で見えた学びの本質とは?

データ分析の目的は何か? これまでの学習を振り返り、データ分析において目的が重要であることを再認識しました。自分がどうありたいのか、そのためになぜデータ分析を学ぶのかをしっかりと言葉にすることが大切だと感じました。振り返りの中で、学習した内容を理解したつもりでも、言葉にできなかったり、理解が定着していないことがあると気付きました。 学んだことを実務にどう活かす? 講座全体を通じて学んだデータ分析のプロセスを、実際のお客さまアンケートや業務指標の分析に活用しています。サービス品質向上のために、問題点や原因を見つけ、それに対してどう対策するのかを具体的に見出していきます。 データ分析の具体的な手順は? まずは9月末までに、上半期の各種データの大きな傾向を洗い出し、仮説構築まで行います。その後、10月に入ったら上半期全体のデータを当てはめ、より詳細な分析を進めます。データのビジュアル化も必要なため、Tableauに新たなダッシュボードを作成します。

データ・アナリティクス入門

日常の比較で見つける学びの光

比較は本当に必要? 分析に取り組む際、まずは比較が基本であるということを改めて実感しました。今回の学習を通じて、日常的に行っていることでも、再確認する必要があると感じました。 目的をどう捉える? また、データ分析を行う際には、その目的を明確にすることが不可欠です。何を明らかにしたいのか、どのようなデータを使い、どう加工して分析するのかを事前に整理することで、分析の精度が向上します。 結果をグラフで見せる? さらに、得られた結果をどのようにグラフで表現するかも非常に重要です。グラフは視覚的に情報を伝える強力なツールであり、分析結果を見やすく、分かりやすくするためには適切なデザインや構成が求められます。 業績をグラフで解説? 会計データを取り扱う中で、毎月の業績報告においても、的確な分析が会社の問題点や改善点を浮き彫りにすると考えます。分析結果を見やすくグラフ化することで、その内容を具体的かつ説得力のある形で提案できる点が大きなメリットです。

クリティカルシンキング入門

構造的文章作成で伝える力を磨く

結論はしっかり伝わる? 伝えることの難しさを痛感し、今まで思いつきで言葉を並べていたことに気付きました。結論を明確にし、それに対する複数の理由と具体化を意識しながら文章を組み立てることが大切です。特に、ピラミッドストラクチャーを意識すると、構造的な文書となり、相手の理解度が向上します。 書く目的は明確? また、実験や評価試験の記録文書の作り方も改善したいと感じました。書き手ではなく読み手を優先し、目的を明確にすることで、データの見せ方も工夫でき、より理解しやすい文書が作成できると思います。この考え方はマニュアル制作の際にも役立ちます。 文章組み立てはどう? 文書を構成する際には、主語と述語を明確にすることが重要です。文章を評価し、俯瞰的に見ること、そして手順を踏んで進めることが求められます。言語の選択や概念の整理も重要で、順序立てて根拠を示し、ピラミッドストラクチャーを活用して結論を導き、それに対する理由付けと具体化を意識することが求められます。

戦略思考入門

競合を超える!戦略と分析の新発見

ターゲットと競合の意義は? 差別化戦略を考える上で、改めて「ターゲット顧客」と「顧客視点の競合」の重要性を認識しました。競合にばかり目を向けると、自社の本質を見失うことがあります。そこで、VRIO分析などのフレームワークを活用し、戦略立案や競合の把握に役立てることが重要です。 戦略実行の鍵は何? 経営層が策定した戦略を実行する場面が多くありますが、今学んだフレームワークを活用することで、戦略への理解を深めることができます。また、自分が収集したデータを効果的に活用し、それを他のメンバーに共有することで、組織全体を正しい方向に導く努力をしています。 業務で差をつける方法は? 具体的には、自分が担当する業務内で顧客と競合を見直し、現在の設定と比較して違いを見つけ出します。市場の変化を感じるだけでなく、フレームワークを用いて言語化し、その分析結果を組織へフィードバックしていきます。この考え方や動きを他のメンバーにも広げていくことを心掛けています。

データ・アナリティクス入門

仮説で描く未来の戦略図

仮説整理はどう進む? ビジネスフレームワーク(3C、4Pなど)を活用することで、なんとなくで仮説を立てるのではなく、複数の仮説をMECEに整理できるという認識が得られました。また、仮説には「結論の仮説」と「問題解決の仮説」の2種類があることを知り、仮説に対する考え方が大きく変わったと感じています。 課題解決は何を問う? マーケティング施策の企画段階では、まずお客様の課題が何であるかを明確にし、What、Where、Why、Howのプロセスに基づいた問題解決の仮説思考を用いることで、心に響く施策を考案したいと考えています。一方、振り返りの際には、施策の結果を踏まえた上で結論の仮説を用い、データを検証していくことが重要だと感じました。 計画実行はどう見る? 今年度の施策の振り返りと来年度の計画を進める時期にあたり、初めからデータを集計するのではなく、まず仮説を立て、その検証に必要なデータを収集・比較分析するアプローチを取り入れていきたいと思います。

クリティカルシンキング入門

データ切り口で見える解約の真実

データはどう活かす? データ自体を見るだけではなく、その見せ方を工夫することで、グラフ化したり比率を示したりするなど、異なる視点から事実が浮かび上がることが分かりました。さらに、データを様々な切り口から分析することで、明確な傾向が見えてくると同時に、その切り口に意味があるかどうかが重要であると感じました。 解約傾向は何だ? また、解約企業の傾向(解約時期や解約理由など)を詳細に分析することで、必要な施策を適切なタイミングで実行できるのではないかという考えに至りました。そこで、復習も兼ねて、以下の点について取り組んでみることにしました。 施策実行の鍵は? まず、解約企業のリストを作成し、解約理由を細かく分解してデータ化します。さらに、解約企業の利用状況を抽出し、解約前の利用状況も分解してデータ化することで、今後の活動施策への活用を目指します。これにより、既存顧客へのアプローチの際、重点的に注力すべきポイントを明確にすることができると考えています。

クリティカルシンキング入門

データ分解で未来を切り拓く学び

データ分解のコツは? データを分析するときには、まず分解することの重要性を学びました。物事を分解する際には、次の三つのポイントが大切です。まずは手を動かすこと、機会的に分けないこと、そして複数の切り口で分けることです。また、MECEとは「もれなく、ダブりなく」切り分けられた状態を指します。分解の切り口には、層別分解、変数分解、プロセス分解があります。 売上数値の見方は? 自社製品の売上状況や他の薬剤の売上状況を記載した月毎のデータを用いることで、今後のアクションを検討する際に役立てたいと考えています。ただ単に数字の流れを追うのではなく、データを複数の切り口で分解することで課題を抽出します。 施設売上の課題は? 施設の売上状況を基に課題を探り、今後の行動を検討する際にこれを活用したいと考えています。従来の月毎の売上やシェアだけでなく、同種同効薬や関連薬剤のデータも収集し、季節別や医師の特徴(年齢や出身大学)、地域別などにデータを分解してみます。

「重要 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right