データ・アナリティクス入門

データ分析を変える前に目的確認の力

データ分析の目的すり合わせとは? 講義内のグループワークでは、上司と部下の間でデータ分析の目的をしっかりとすり合わせる重要性についての議論が特に印象的でした。コミュニケーションが一方通行になっていないか、それぞれの思い込みをそのままにしていないか、データ分析に入る前に行うべきことがあると再認識しました。 目的の共有で生まれた変化は? そこで、「データ分析前の目的のすり合わせ」を意識し、今週の業務に取り入れてみました。業務内容としてはデータの取り扱いが簡単なものであっても、その目的を明確に部下に説明すると、彼らの表情が明るくなり、納得感が増したように思います。 データの共有は次にどう活かす? 日々の業務は多種多様なデータの取り扱いの連続です。目的やデータの見方について、社内で共通の認識が確立している場合もあれば、単にデータをまとめて共有するだけで次のアクションにつながらない場合もあることに気づきました。今後は社内でグラウンドデザインの共有を進め、各種データの目的やKPIとしての活用方法について議論を深めていきたいと思います。

クリティカルシンキング入門

クリティカルシンキングで業務課題を解決する方法

繰り返し学ぶ重要性は? 本質的な問いの立て方を意識し続けることが重要です。ビジネススキルは繰り返して学習しないと身につきません。そのため、過去の学びを何度も反復し、確実に身につける必要があります。特にクリティカルシンキングは、あらゆるビジネススキルの基礎であり、重要な要素です。 クリティカルシンキングの活用法とは? 例えば、製造などで連続生産する際には、クリティカルシンキングを用いて課題を抽出します。そして、その課題に対して、3つの視点を用いながら解決方法をクリティカルシンキングで考えます。解決方法は、人々が求める視点で提示し、イシューを設定して筋道の立った考え方を構築し、軸がぶれないようにします。 効果的なデータ表現の工夫は? また、まとめたデータなどを図表で表現し、分かりやすくする工夫も必要です。課題を説明する際には、ポイント順に整理しながら説明することが大切です。相手がどのような情報を求めているかを考えながら整理し、まとめた情報を文章で表現することで、何が言いたいのかを自分自身で明確にすることが求められます。

クリティカルシンキング入門

データ分析で見つける課題のヒント

課題をどう発見する? 本講座で、課題(イシュー)を特定するプロセスについて学びました。これまで、最終的に解決すべき問題が何であるかを自分の先入観や仮説だけに頼って考えていたように思います。今後は、各種データを様々な角度から分析し、その結果をもとに課題を特定する作業に慣れる必要があると感じました。 販売計画をどう分析? 具体的には、ソリューション販売計画の策定に取り組む際、この手法を活用しようと考えています。たとえば、ある製品について「売る」「売りたい」といった単一のキーワードだけではなく、現状や市場、価格など複数のキーワードを抽出してデータ分析を行い、さまざまな切り口からイシューを探索する方法です。 意見交換は効果的? さらに、大きな課題に対しては、課題を細分化したキーワードに分解し、各キーワードに対応するデータを揃えることで、より具体的なアプローチが可能になると実感しました。加えて、同僚の意見を積極的に求め、ディスカッションを通じて個人的な偏りを排除することが、より客観的にイシューを特定するために重要だと感じています。

データ・アナリティクス入門

数字で読み解く現場改善の秘訣

データ分析はどう理解? データ分析の手法について学び、既存のメソッドを活用することでデータ内に潜む意味を解析できることを理解しました。ただし、MECEの設定基準やその手法についてはまだ不明な点があるため、今後は確認を重ね、分析力の向上に努めたいと考えています。 現状のITは十分? また、職場で業務改善を担当する中で、現在の環境では活用可能なITリソースが十分に利用されていないという認識に至りました。単に使い方や技術的な問題だけでなく、業務の種類、内容、工数、手順などが十分に把握されないままツールが導入されている可能性を感じたため、まずは自身の置かれている環境の理解を改めて確認する必要があると実感しました。 業務改善の手法は? 今後は、職場内の業務項目、分類、関連する法令、関わるステークホルダー、工数、作業手順をリストアップし、最適なツールの選定や作業方法の見直しにつなげていく予定です。具体的には、現在使用している掲示板の改善に向けて、上記の内容を全員に再認識してもらうための作業と、その手順書の作成を進める考えです。

クリティカルシンキング入門

心に響くシンプル伝達法

提案資料はどう伝える? 業務推進に必要な提案資料の作成にあたっては、まず提案の目的、もたらすメリット、必要性、関係者への影響などをスライドに分かりやすくまとめることが大切です。資料作成時は、伝えたい内容や数値データに合わせたグラフを選び、例えば時系列データには棒グラフ、変化や推移を示す際には折れ線グラフを使用するなど、見せ方を工夫します。また、各軸には忘れずに単位を入れ、タイトルは内容が一目で分かるように工夫する必要があります。さらに、文字の表現やフォント選び、下線、太字、色などを活かしながら、情報が具体的に伝わるスライド作りを意識しています。 メールで本当に伝わる? 今回の講義を通じて、メールなどのコミュニケーションでも注意が必要だと実感しました。自分が発信するメールが必ずしも相手にしっかりと伝わっていない可能性があるため、タイトルやリード文、本文の構成をシンプルかつ要点が伝わるように工夫することが求められます。短い文章で必要な情報を明瞭に伝えることを意識し、読み手に負担をかけないコミュニケーションを心がけたいと考えています。

クリティカルシンキング入門

伝え方に効く!見せる工夫の魔法

新たな発見は何? 今週の演習を通じて、自分が気づいていなかった新たな発見がいくつかありました。グラフで可視化するだけでなく、種類や配置など、相手に伝えやすい工夫が必要だと感じました。また、フォントやカラーといった文字の効果にも注目し、伝えたい内容を強調するためにアイコンを追加したり、表現方法を工夫することで大きな効果が得られる点が印象に残りました。 既存資料で苦戦? 業務では、社内用の資料やプレゼンを作成する機会が多いですが、既存のテンプレートに沿って作業することが多く、自分のアイデアを表現する余地が少ない状況です。以前、グラフを用いた可視化が予期せぬ反応を呼んだ経験もありました。 伝え方は工夫? 実践的な活用として、チームミーティングの資料やデータ管理における指標の提示に今回の学びを生かしたいと考えています。「伝えたいこと」を強調することで、共通認識の形成や具体的なアクションプランの構築につながると期待しています。今後は、プレゼンの体裁だけでなく、伝え方にも工夫を凝らし、より説得力のある資料作りを目指したいと思います。

データ・アナリティクス入門

4視点で読み解く問題解決のコツ

情報収集の課題は? 収集したデータは、そのままでは問題解決に活かすことが難しいと感じました。なぜなら、目の前にある情報に左右されやすく、都合の良い情報だけを集めて判断が偏ってしまうリスクがあるからです。 問題整理の手法は? また、【What】【Where】【Why】【How】というステップで問題解決を整理する考え方は、非常に効果的だと実感しました。これはデータ分析に限らず、さまざまな事象を体系的に整理する上で役立つ手法です。たとえば、製品企画や業務提案に取り組む際、どの切り口からアプローチするかの起点となるため、有用だと感じました。 提案の差はどう? 最近の新しい業務提案にあたっても、同様に【What】【Where】【Why】【How】で整理する必要があります。ただし、提案内容が【How】だけに偏ってしまう傾向があるため、MECEを意識して全体をバランスよく整理することが重要です。さらに、金額(HowMuch)や期間(HowLong)といった具体的な要素も含めて考えることで、より実践的な問題解決が可能になると感じました。

データ・アナリティクス入門

WHYを追う!仮説×データの挑戦

仮説検証で何が分かる? ライブ授業では、WHAT⇒WHERE⇒WHERE⇒HOWの順番に沿って、適切な仮説を基にデータ検証を行う重要性を再認識しました。以前学んだクリティカルシンキングにおける問題解決のステップと共通点が多く、両者の関係性がよく理解できました。仮説検証のプロセスにデータ分析を組み合わせることで、より良い課題解決や提案が可能になると感じています。 内部監査にどう活かす? この考え方を、私自身の内部監査業務にも取り入れ、問題の核心に迫る質の高い改善提案を実現したいと思います。特に、これまであまり重視してこなかったWHYの分析については、今後、的確に問題の真因を把握するために、重点的に実施していく予定です。 MECEで本質をつかむ? また、課題に対して決めつけず、全体をMECEの視点で捉えながら不要な部分と深堀が必要な部分を明確に区別したいと考えています。深堀が必要な箇所については、改めてWHAT⇒WHERE⇒WHERE⇒HOWのステップを踏み、考えを可視化して説明できるよう努めることが大事だと実感しました。

データ・アナリティクス入門

数字に秘めた学びの軌跡

データの真意は何? 実際のデータをただ眺めるだけでは、その背後にある示唆を十分に引き出すことは難しいです。データの意味を正しく理解するためには、適切な分析手法を用いる必要があります。 率の活用でどう変化? 単純な数字の比較だけでは良し悪しが明確にならない場合もあるため、「率」という指標を活用することで、より深い理解が得られることがあります。 体系的整理は有効? 問題の原因を探る際には、直感だけで原因を挙げるのではなく、体系的なフレームワークを使って整理することが効果的です。この方法により、抜け漏れなく各要素を洗い出し、論理的な仮説を立てやすくなります。 最適案の選び方は? また、複数の選択肢から最適な案を選ぶためには、コストや効果、運用負荷といった各比較軸に重みをつけ、数値化する手法が重要です。これにより、客観的な評価が可能になり、意思決定の質が向上します。 業務判断はどうなる? 日常業務においても、フレームワークや評価軸を意識して活用することで、論理的かつ効率的な判断を行うことができるようになります。

データ・アナリティクス入門

誰に聞くかで変わるデータの真実

誰に聞くべき? データ収集の過程では、まず「誰に」聞くかという点が重要だと感じました。意味のある対象から情報を得ることで、収集したデータの信頼性が高まります。 聞き取りはどうする? また、情報の聞き取り方も大切です。アンケートや口頭での聞き取りなど、目的に合った方法を用いることで、精度の高いデータにつながると実感しました。特に、比較するためのデータ収集を怠らないことが求められます。 反論排除は必要? さらに、「反論を排除する情報にまで踏み込む」という視点を、より一層意識すべきだと学びました。これにより、意見の偏りを防ぎ、客観的な分析が可能になると感じています。 仮説の確認は? アクセス解析の業務で日頃から仮説を活用しているとはいえ、今回の学びは仮説を立てる際のポイントを再確認する良い機会となりました。複数の仮説を検討し、決め打ちせずに異なる切り口から網羅性を持たせることが、より説得力のある分析につながると理解しています。 実践は続くの? 今後もこの考え方をしっかりと実践していきたいと思います。

データ・アナリティクス入門

仮説が映す未来への挑戦

仮説はどう説得力増す? データ分析において、仮説を立てることは説得力の向上に大変重要な要素だと実感しました。過去、現在、将来といった各目的に合わせて、結論や問題解決といった違いがある中で、仮説の活用は説得力を高めるだけでなく、自身の仕事に対する興味や関心を引き上げる効果もあると学びました。また、仮説を用いる際には、その精度を高め、迅速に検証を進めることが求められます。 報告はどのように変化? 自身の分析結果を報告する際、従来は仮説が正しいことを説明することを重視してきました。ですが、必ずしも直接的な正当性の説明にとどまらず、仮説自体の説得力をさらに高めることで、より充実した報告ができると感じるようになりました。今後は、この仮説とデータの活用方法を意識して実践していきたいと思います。 検証はなぜ時間かかる? 一方で、仮説の検証には予想以上に時間がかかることが多く、深い分析や検証が十分に行えていない現状もあります。他の参加者がどのように仮説検証を進め、時間管理や分析の精度を向上させているのかをぜひ伺いたいと思います。

クリティカルシンキング入門

データ分析で見える!戦略立案の新視点

データ分解の重要性とは? データを分解することで、事象の原因について仮説を立てやすくなると理解しました。ただし、分解方法を誤ると要因が見えにくくなる場合があるため、複数のパターンで試行して最適な方法を見つける必要があります。また、分解には漏れなく重複なく全体を分解していくことが重要です。さらに、異なる切り口で分解することで、要因を特定しやすくなることも判明しました。 顧客分析で見つかるボトルネック 新規顧客と既存顧客に分けて、受注に至るまでの各プロセスにどのようなボトルネックがあるのか分析したいと考えています。同様に、業種や規模、地域といった異なる視点からも分析を行い、どこにアプローチをすれば最大の効果が得られるか仮説を立て、実践してみたいです。 効果的な営業戦略を立案するには? 営業戦略を立案する際には、まず業務プロセスを見直し、データを取得できるようにする必要があります。アプローチの回数や提案の回数、対面かWebかといった各種データを分析可能にするため、業務プロセスの改善から着手する必要があることが分かりました。
AIコーチング導線バナー

「データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right