クリティカルシンキング入門

データ分析の新しい視点を発見!

目的と仮説の意義は? データ分析を行う際には、目的と仮説をしっかりと持って取り組むことが大切です。そして、分析の結果に対する「それでどうなるのか?」を明確にすることを意識しましょう。MECE(モレなくダブりなく)にグルーピングした後、そのグルーピングを自分でレビューし、精度を高めることも重要です。 自己レビューの限界は? 私は日常的に分析や示唆出しを行っており、適切な粒度でグルーピングをすることの重要性を感じています。しかし、自己レビューには限界があるため、まず自分でレビューをした後に、他者からのレビューを意図的に組み込むことで、多角的な視点を得るようにしています。 レビュー導入の理由は? 分析後には、レビューを求めるプロセスを自身の業務フローに組み込んでいます。他者のレビューを得るために、締切よりも早めの段階でアウトプットを心がけています。この取り組みは、企画を伴うすべての業務に適用しています。

マーケティング入門

顧客価値を見極めるブランド戦略奮闘記

顧客価値をどう見極める? 誰に売るかを考える際、顧客にとっての価値を見出すことの重要性を再認識しました。顧客がその価値を本当に認めるかどうかを判断するのは難しいため、主観に頼らず、客観的なデータを基にした判断が重要だと実感しました。 ブランディングで活用するデータは? 現在、私はグループ会社のフランチャイズ店のブランディングに取り組んでいます。ここでは自身の経験に基づく主観的な考えだけでなく、現場でのヒアリングやアンケートなど、客観的データを用いて、ターゲットとしているフランチャイズ店のオーナーやエンドユーザーに価値を提供する施策を検討しています。 ステークホルダーへの価値提供をどう確認する? また、施策を展開するにあたり、自社だけでなく、フランチャイズ店やエンドユーザーなど、すべてのステークホルダーに対して確かな価値を提供できているかを確認するため、時折立ち止まって考えることが重要だと感じています。

データ・アナリティクス入門

データ分析の価値を広げるために

データ分析の本質とは? Week 1の講義・学習で新たに学んだ点は以下の3点です。①データ分析の本質は「比較」、②データ分析は必ずしも「定量的である」必要はない、③データ分析の前の条件設定が重要。前提条件が揃っていないと正しい分析はできません。 分析結果をどう共有する? 社内データの活用時に、前提条件・分析目的・分析結果から行うアクションを利害関係者に共有することで、共通の目的達成のために議論ができると感じました。データ分析は一方的に行い、結果を発信するものではないということを広く共有し、浸透させたいと考えています。 データ活用を身近にするには? データに関する業務が属人化しており、”データ活用=特定の人の特別な仕事”になっている部分があります。現在扱っているデータは広く社内で活用可能な内容も含むため、よりデータ活用を身近に感じてもらえるような機会(社内セミナー、報告会)を増やす必要があると思います。

クリティカルシンキング入門

見やすさと中身を追求した資料作り術

表現の工夫で印象はどう変わる? 表現の工夫によって、相手に与える印象は大きく変わることを学びました。まずは基本を理解し、様々なグラフのタイプが持つ理由を踏まえた上で応用するかどうかを判断することが重要です。デザインに意識を向けすぎると中身のないデータ資料になってしまうため、本質を理解し、資料をまとめた上で批判的思考と他者目線を意識して取り組みます。 資料作成のポイントとは? これを元に、フォントや色合い、グラフなどが見やすくまとめられた資料を作成することを心がけます。過度に凝るのではなく、必要な内容に集中し、感覚的にわかりやすく、好印象を与える資料作成のヒントを得ることができました。 GPTを活用すべき理由 今後はGPTなどを活用し、グラフやフォントの適切さを確認しながら、より分かりやすい資料を作成していきます。読む相手が辛くならないように配慮し、他者目線を考慮した文章や資料を作成するよう努めます。

クリティカルシンキング入門

データ分析が変わる!MECEの魅力発見

データ分析は何が肝心? データを分析する際、「分解」する視点や切り口によって得られる情報が大きく異なることに気づきました。表面的な情報で安易に判断せず、多角的な視点からデータを分析し、十分に検証することの重要性を認識することができました。 要因の背景はどう検証? たとえば、離職率の原因を調査する際には、年齢や勤続年数、部署、職位などの要素をMECEに分けて分析することで、特定の要因や傾向を見つけやすくなります。さらに、背景や理由を深く掘り下げることで、適切な予防策を講じることが可能になると考えています。 分解で見えているものは? まずは、自分自身でデータを加工・分解することで、データ分析に慣れていきたいと思います。データを扱う際にはMECEを意識し、さまざまな視点から分析を行うことを心がけます。また、そこから導き出した仮説については、他の視点からも確からしいかを検証する姿勢を持ちたいと考えています。

データ・アナリティクス入門

仮説で切り拓く新たな発見の道

仮説は何のために? 仮説を立てることで、問題意識が芽生え、物事に対する検証マインドが育まれます。時間軸によって仮説の内容は変化しますが、頻繁に検討することで説得力が増し、スピードや行動の精度が向上します。そのため、仮説を立てた上で実際に行動していくことが重要です。 なぜ結果に違いが? 経理業務は過去のデータを整理する作業ですが、整理後の結果を見て、なぜこのような結果になったのかを考える際に仮説を活用できます。仮説を立てることで、結果が正しい理由があるのか、それとも処理に誤りがあったのかを、まずは検証することが可能です。 何が原因と判断? 具体的には、予算との比較や前年度との比較を行うことで、突出した変化を確認します。もし大きな変化が見られない場合は問題がなかったと判断できますが、何かしらの極端な変動があった場合には、その原因を仮説に基づいて検証することで、より正確な分析が行えるようになります。

データ・アナリティクス入門

ビジネス課題を解き明かす仮説思考の力

仮説の分類とは何か? 仮説の分類という概念を知らなかったため、この考え方は非常に参考になりました。ビジネスにおいて重要な課題であるコミュニケーションと問題解決を、時間軸を用いて分類し、仮説を立てる思考法は大変勉強になりました。 仮説思考を活動方針にどう活かす? 現在、来期の活動方針を策定しており、今回学んだ仮説思考を活用したいと考えています。前々期、前期、今期のデータを比較することで、売上に課題がある製品とその属性(新製品か定番品か、製造コストなど)を基に、改善計画を提案できるのではないかと考えています。 売上課題の仮説をどう立てる? 具体的には、売上における課題についていくつかの仮説を立ててデータを比較してみる予定です。例えば、①売上金額が減っているのか、②粗利率が下がっているのか、といった課題の内容を明らかにし、更にその課題が発生している要因について仮説を立てて掘り下げていく作業を行う予定です。

クリティカルシンキング入門

基礎から磨く伝える力

問いの共有はどう? 日頃から仕事で「イシューは何か」を考えてはいたものの、問いを意識し続けたり共有することはあまりできていなかったと感じています。しかし、共有がなければ話が進まず、解決策を見つけるのが難しいということにも気づきました。 データ活用の期待は? 来月からはデータ部門のサポートに入るため、さまざまなデータを活用してイシューの洗い出しと解決策の検討を行うのがとても楽しみです。これまで学んだ内容をもとに、相手に分かりやすく伝えるため、図や表、イメージなどを積極的に活用しようと考えています。そのためにも、まずは基本から再度復習することにします。 伝える工夫は何? まず、基本をしっかりと復習し、自分の言葉でノートにまとめたアウトプットを行います。そこから実務でデータを使い、自分なりの工夫を加えたスライド作成や資料作りに取り組むとともに、人に伝えるための表現方法にも意識を向けていこうと思っています。

データ・アナリティクス入門

ヒストグラムで読み解く営業戦略

平均の捉え方は? これまで、平均値については単に合計を個数で割るだけの計算に留め、データのばらつきにはあまり目を向けていませんでした。加重平均や標準偏差といった考え方は知っていたものの、実際の活用方法については具体的なイメージが薄かったため、今回の講義でその使い方を理解することができました。 顧客層の把握方法は? この学びを自分の業務に活かすため、地区全体の顧客売上データをヒストグラムで区分し、顧客層ごとの購買力を把握する手法に注目しました。顧客の売上ランクごとに適切な営業施策を検討し、個別にアプローチできる可能性を感じています。 実践で効果は? 具体的には、まず売上データを取得し、実際のヒストグラムを作成して区分を始めます。その上で、各区分ごとに合わせた営業施策の計画と実施を行い、売上数字の定点観測で変化を読み取ります。このプロセスにより、施策の効果を判断し、次の戦略検討に役立てる予定です。

データ・アナリティクス入門

実践で磨く仮説力の秘密

実務分析の感想は? 今回の演習では、多くのデータや豊富な情報を基に、実務に即した分析を体験できました。仮説を立てる重要性を実感し、検証の目的を明確にすることの大切さを再確認しました。一方で、考えやすい仮説もあれば、内容によっては仮説の設定に苦慮する面もありました。今後は経験を積み、自然に仮説を立てられるようになることを目指したいと思います。 比較で何が見える? また、最初の講義で学んだ「分析は比較である」という考え方を再認識しました。検証項目をしっかりと揃えることが、正確な判断に繋がると感じました。自分の業務では自らデータを取得する機会が少ないため、実際に活かせるシーンは限られるかもしれませんが、常に比較項目を揃える意識を持って仕事に取り組みたいと考えています。今回の内容は情報量が多く、フレームワークの理解が十分とは言えなかったため、書籍の読解や講義の再視聴などで定着を図り、理解を深めたいと思います。

データ・アナリティクス入門

平均の壁を越える、新指標の挑戦

課題はなぜ難しかった? 前週に比べ、今回の課題は難易度が上がっており、理解するまでにやや時間がかかりました。これまでは平均値を中心に分析していましたが、今回は単純平均、加重平均、幾何平均、中央値、標準偏差といった各指標を活用することで、より正確な分析に結びつけることができると感じました。 営業データの見直しはどうする? 業務では営業関連の数字を扱う機会が多いため、従来は一律の平均値を用いて前年度との比較を行っていました。しかし、さまざまな方法を試すことで、異なる角度からデータを分析できるのではないかという可能性を感じています。 新手法の試行錯誤は必要? これからは、どのデータにどの指標を適用するかを十分に検討した上で、目的に合わせたデータの取得と分析に取り組んでいきたいと思います。新しい手法に慣れるまで試行錯誤はあるかもしれませんが、自分にとっての最適な分析方法を見つけ出すことを目指します。

クリティカルシンキング入門

問いと実践が導く解決の道

自ら問いはどう始める? 適切な課題を捉えるには、まず自ら「問い」を立てることが大切だと実感しました。ケーススタディを通じて、数字やデータを分解する手法を学び、分解することで問題点が明確になり、解決策を具体的に構築できることを実感しました。 チームの伝え方はどうする? また、チームの課題を正確に把握するためには、理想とのギャップ、すなわち「問題」を捉え、その内容を的確に相手に伝えることが重要だと感じています。これによって、課題解決へとつながるトレーニングを外部から受けるための土台が築かれると思います。 データ分解で何が見える? さらに、得たデータを細かく分解し、いろいろと試してみることで、新たな「イシュー」を特定できる可能性があると考えています。以前学んだ内容も踏まえ、遠回りでも実際に手を動かして検証することが重要です。具体と抽象を繰り返すことで、より深い理解と着実な進歩を遂げられると感じています。

「データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right