クリティカルシンキング入門

予算作成を成功させるMECE分析のコツ

分析と成功の考え方は? 「分かる」は「分ける」と同じ意味だということが重要です。分析の結果、顕著な傾向が見られない場合でも、それは失敗ではなく、むしろ傾向がないことが確認できた成功です。特に、MECE(漏れなくダブりなく)を意識し、分析の切り口を明確にすることが大切です。 来期に向けた予算分析法 来期の予算作成に向けては、今期のデータをMECEを活用して分析する予定です。具体的には、四半期ごとの傾向、各勘定項目ごとの傾向、各支店ごと、固定費用と変動費用、そして担当者ごとに分けて分析します。また、予算作成の時期を待たず、今から準備を進めることも可能だと感じました。 代替案とスムーズな承認 現状を追う目線とは異なる視点でデータを見て、必要なことを考えます。どのような資料を作成すれば予算承認が通りやすく、承認者が納得しやすいかを考慮します。さらに、他の国や会社全体の状況を把握し、予算取得のために想定される壁があるかどうかを調査し、事前対策やプランBを考えておきます。承認後のフローも整理し、次のアクションにスムーズにつなげられるよう準備を進めます。

クリティカルシンキング入門

データ活用で見えた新たな視点と工夫

データ加工法をどう活用する? データの加工法について学びました。与えられたデータをそのまま使うのではなく、自分で項目を追加することを意識することが重要です。例えば、絶対値や相対値(比率)を追加することで、データにひと手間加えることができます。数字をグラフにすることも非常に効果的です。また、データを分解する際には、複数の切り口で考えることで異なる見解が得られることがあります。 人件費分析で何を検証する? 現在、人件費分析を行っているため、今回学んだ切り口や加工法を実践しています。具体的には、時間外労働時間の妥当性を検証するために、データを性別、既婚未婚、年齢(若手かベテランか)、部門ごとに切り分けて情報を抽出し、グラフで可視化します。 PowerBIでどう可視化する? 人事データを入手したら、比率や不足している情報を追加し、勤怠情報としての表を作成します。このデータを可視化するためにPowerBIを使用し、グラフ化します。さらに、散布図を用いて時間外労働時間と相関のある事柄を確認し、そのデータを参考に実際に関連性があるかどうかを調査します。

アカウンティング入門

決算書で広がる企業の世界

決算書は何を示す? 決算書からは企業のビジネスモデルや業界特性が見え隠れし、業界ごとに異なる貸借対照表の構造に注目することで、どこに資金が投じられ、どの部分に価値が見出されているかを読み解くことができます。今後はこの視点を大切にしつつ、さまざまな業界の決算書を比較・分析し、自分なりの見方を深めていきたいと考えています。 報道と実績はどう? 新聞やニュースで報じられる企業の決算や経営動向については、実際の決算書を自ら確認し、報道内容と照らし合わせることで分析能力を養いたいと思います。単なる受け手に留まらず、自らの視点で業界全体を調査する「業界研究」を行い、企業活動をより深く理解し将来の動向を予測する力を高めたいと考えています。 学んだ内容はどう活かす? また、学んだ内容を定着させるために、週に1回、異なる業界の企業の決算書を選んで読み込み、分析する時間を設ける予定です。経済ニュースと実際の財務データを比較することで、経営判断の背景を理解し、視野を広げる習慣を身につけ、継続的な取り組みによって実務への応用力も向上させていきたいと考えています。

データ・アナリティクス入門

平均再発見!生データが語る学び

平均って何だろう? 基本的な代表値である平均とばらつきを再確認しました。また、関連するフレームワークの動画を通じて、単純平均、加重平均、そして幾何平均といった具体的な計算方法が存在することを学び、以前は知っていた幾何平均についても、計算方法や名称を含めて改めて理解することができました。 中央値はなぜ大切? 技術職として、日常的に平均値や標準偏差を用いたばらつきの分析を行っています。中央値については、その定義や目的を理解しているものの、実際の業務では頻繁に使用することはありません。しかし、中央値が持つ目的を意識し、グラフや図を用いて全体の分布や外れ値の有無を確認することで、解析の正確性を担保していると感じています。 外れ値の確認方法は? また、普段からデータに触れる中で、改めて図での表示を行い、データの前処理における外れ値の存在を意識することの重要性を再認識しました。どの業務においても、正しい目的意識を持つことが根幹であると実感しており、今回学んだ単純平均、加重平均、幾何平均を活用して、目的に即した正確な解析を進めていきたいと考えています。

データ・アナリティクス入門

偏差値では語れない実感

平均に秘めた疑問は? 教育現場では、単純平均ばかりが重視されがちです。標準偏差を基に算出される偏差値は、詰め込み教育の象徴とされることもありますが、標準偏差を無視すると真実を見誤る可能性があることを、ぜひ周囲にも伝えていきたいと思います。 統計教育の難しさは? 私は高校で数学の教員を務めており、新課程において数学の統計分野が必修となったため、標準正規分布まで教えることになりました。この単元は多くの数学教師にとって教えにくいと感じられがちですが、実際に社会人になってから最も役立つ知識であると実感しています。実際、校内の制度を変更する際には、正規分布に基づくデータを示すことで説得力を得た経験があります。 定量分析に挑戦すべき? また、私は生徒の成績データを扱う部署に所属しており、統計の知識はすでに成績データの分析に活用されています。一方で、生徒募集に関しては、一般企業での営業活動に例えられるように定性データが中心で、定量データの解析が進んでいません。そこで、データ収集の方法を見直し、次年度から定量的な分析を強化していこうと考えています。

クリティカルシンキング入門

自身のクセを知る:客観視の挑戦

考えのクセ、気付いてる? 自分には考え方のクセがあることを改めて実感しました。具体的には、客観的な視点よりも主観的な考え方に偏ったり、データや数値よりも自分の経験を優先して考えてしまうことに気づくことができました。このクセを直すためには、まず自分自身で常に意識することが大切ですが、それだけでなく、人とのディスカッションの機会を多く作って練習していくことが必要だと感じています。 アンケートはどう読む? 特に顧客アンケートの分析時には、考え方のクセが出てしまわないか注意が必要です。アンケートの自由記述欄では感情移入しやすく、主観的な判断に陥ることがありますが、そうならないように感情に流されず、アンケートから客観的なインサイトを得られるよう分析したいと考えています。 意見交換は必要? まずは自分で現在の課題を意識しながらアンケートを分析します。その後、他人に分析結果を説明して、論理に飛躍がないか、見落としていることがないか確認してもらう機会を設けたいと思います。今後は、多くの人と意見交換を行い、視点の幅を広げることを意識していきたいです。

データ・アナリティクス入門

ナノ単科で見つける学びの扉

自分の学びを振り返る? 自分の言葉で学んだ内容を整理する機会が多く設けられており、復習の面でとても有意義でした。また、これまで習得してきた分析手法を再確認できた点も良かったです。ライブ授業の録画を用いた例題で、実際に手法を振り返るとともに、他の受講生のコメントからうまく言葉にできなかった点もしっかり復習できました。 分析と仮説はどう築く? 実務においては、まず「what」「where」「why」「how」のステップを踏みながらアンケート分析を行い、仮説検討の際にはフレームワークを活用して網羅的に考えることを重視したいと考えています。さらに、「選んで比較」を繰り返すことで、最終的に一つのストーリーとして筋を通す資料を作成できると思います。 実践経験はどう見る? 6月下旬から予定されている社内のアンケート分析において、これらの手法を実践していく所存です。一方で、実践経験が不足している点は課題と感じています。そこで、実務以外にも統計局のデータを用いて地域ごとの人口動向とその原因について検討するなど、さらなる練習機会を積極的に設けたいと思います。

データ・アナリティクス入門

目的意識と比較で開く新たな発見

目的意識はどこに? まず、分析の目的を考えることが当たり前だと感じられるかもしれませんが、私にとっては大きな気づきでした。これまで、データを可視化すれば自然と新しい発見や傾向が見えてくると漠然と思い込んでいました。しかし、まず「何のために」分析をするのかという目的意識がなければ、求める結果は得られないということに気づかされ、仕事への取り組み方が変わると感じました。 比較の意義は? また、分析=データの可視化というイメージだけでなく、その基本は「比較」にあるという新たな発見もありました。具体的な比較対象や基準を設定することで、意思決定がしやすくなります。たとえば、安全衛生に関するタスクでは、法令遵守の状態を確認するために法規制と社内ルールを比較し、どのレベルで何を行うべきかを整理する必要があります。 方法はどうする? 今後は、具体的な方法はまだ模索中ですが、「目的」と「比較」を意識し、どのような結果を得たいのかを明確にしながら取り組んでいきたいと思います。仕事に迷いが生じたときや上司への説明・説得が必要な時に、この考え方を生かしていきます。

データ・アナリティクス入門

柔軟な仮説が未来を拓く

初期仮説の危険性は? 仮説は初めから決めつけず、幅広い視点で持つことが大切です。あらかじめ仮説を立て、それに基づいて検証するため、もし初期の仮説に誤りがあれば、その後の工程にも大きな影響が出る可能性があります。 計画的データ収集は? また、仮説を検証する際には、必要なデータを計画的に収集することが求められます。必ずしも全ての情報が揃っているとは限らないため、誰にどのように情報を収集するか、目的に沿って進める必要があります。 売上データで何発見? 日々の業務で売上データを見る中で、発生した事象に対してまずは幅広く仮説を出すことが有効だと感じました。これまで漠然とした感覚で仮説の検証に取り組んでいたため、今後はより意識的に取り組むことが必要だと思います。 周囲の意見は頼も? 仮説を立てる際は、自分一人で考えるのではなく、周囲のメンバーからの意見も取り入れ、網羅性を高めるよう努めます。過去の経験や先入観をなるべく排除し、フラットな視点で物事を俯瞰することを心がけるとともに、仮説検証の目的を踏まえて最適なデータ収集方法を選択していきます。

戦略思考入門

軸を見極め、未来を掴む

判断軸の優先順位は? 物事を選ぶ際は、複数の判断軸を検討し、その中で特に重視すべき軸に優先順位を付けることが大切です。そして、判断材料にはできるだけ具体的な数字を用いるよう心がけています。私自身、数字を使うことをおろそかにしがちなので、特に注意しています。 効果的なデータ工夫は? また、データにはひと工夫加え、視覚的にもわかりやすく仕上げることが効果的です。すべてのトレードオフを同時にカバーしようとすると戦略が中途半端になり、結果として失敗してしまう恐れがあります。不必要な要素を捨てることで、際立つ戦略が取れると実感しています。たとえ成功率が低くとも、明確な勝利を狙うことが重要です。 トレードオフはどう見る? さらに、完璧なバランスで効果を最大化できないかどうかも検討する必要があります。トレードオフの関係は、仕事や家庭、目の前の課題と将来への投資といったあらゆる局面で存在します。どこに時間とエネルギーをかけるか、どのくらいのバランスで取り組むかを事前に考えることで、日常生活に流されず、ありたい姿に近づけるのではないかと考えています。

アカウンティング入門

数字に秘めたビジネスの真実

数字は何を示す? 数字の背後には必ずストーリーが存在するという実感を、Week2の学びを通して得ました。P/Lを読み解くことで、企業がどこに価値を見出し、その価値がどのように成功しているのかが明確になると感じています。以前は、どのような工夫でビジネスが展開されているのかを想像するにとどまっていたのですが、今は具体的なデータを通して理解できるようになりました。 競合はどう捉える? また、Week2からWeek3にかけて、単に自社のP/Lを把握するだけでなく、競合他社や興味のある企業のP/Lにも関心が広がりました。来月のTeam Meetingでは、昨年の実績を振り返りながら、自分なりの考察を交えて今後の展望について意見を述べる予定です。 持続可能な働き方は? 今回、特定の企業のP/Lについて詳しく検証した結果、朝早くから夕方までの長時間労働が常態化している現状が浮き彫りになりました。このようなビジネスモデルは持続可能とは言い難いため、今後はコンセプトに沿った収益体制を確立しつつ、業務を他者に委ねる形への移行について検討したいと考えています。

データ・アナリティクス入門

比較が導く分かりやすい分析

比較の意義は何? 分析の基本は「比較」にあると改めて感じました。比較を行う際は、条件や前提を揃えることが重要です。何のために分析を行い、どのようなデータをどのように加工するのか明確に考えることで、ただ単にグラフを作成するだけでは不十分な分析から、有意義な知見を引き出せると理解しました。 誰のデータを扱う? また「誰の」「何のための」「どんなデータ」を扱うのかということをしっかりイメージすることが、ケースごとに最適な見せ方を検討する上で不可欠です。目的に合わせた具体的な仮説を立て、関係者全員で共通認識を持つことが、説得力ある分析につながると感じました。 目的と仮説はどう? さらに、作業に入る前に分析の「目的」と想定される「仮説」を明確にすることが重要です。以前はただタイトルをつけるだけで済ませていましたが、グラフから確認したい事柄を明記することで、チーム内での認識が統一され、より精度の高い分析ができるようになりました。目的に合わせ、比較対象の前提条件を整理してから作業を開始する手法は、今後の分析においても大変有効だと再認識しました。
AIコーチング導線バナー

「データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right