クリティカルシンキング入門

データ視点で広がる分析の世界

多角的分析で気づく? データの分析には様々な視点が存在します。一つの視点でMECE(漏れなくダブりなく)の状態を達成しても満足せず、他の視点をいくつか考慮し、それらを比較することによって最も示唆に富んだ分析がどれかを確認する意識が重要であると気付きました。 決算資料の整理は? また、決算説明資料においては投資家の視点に立ち、業績の変化や注目すべき勘定科目、さらには投資家が企業の決算で知りたいことをMECEに従って整理する必要性を認識しました。企業が伝えたい内容も同様にMECEで考えることが大切だと感じました。 伝えたい内容は何? 今後は、ステークホルダーの立場ごとに伝えたいことを漏れなくダブりなく検討することから始めたいと思います。これまではなんとなく投資家や企業の目線を選んでいましたが、これからはその内容をしっかりと把握し、チーム内で議論できるよう努めます。

データ・アナリティクス入門

現場の知見!多角的視点で切り拓く未来

分析の始まりは何? データ分析は、基本的に各要素の比較から始まります。分析を行う前に目的をはっきりさせ、まず仮説を立てた上で必要なデータを収集することが重要です。一つの考えに固執するのではなく、複数の視点から検証し、さまざまな可能性を考慮することが求められます。 フレームワークは役立つ? これまで学んだフレームワークを実務に応用し、再度データ分析に取り組むことで、現状の問題点や改善策が明確になります。たとえば、株式データや取引先データを活用し、視覚化することで、より説得力のある分析と問題解決が可能となります。 必要なデータは何? また、何が問題であり何を解決すべきかという目的を常に見失わないようにすることが大切です。さらに、どのような意思決定を行うために、どんなデータが必要かを明確に考え、取得できるデータをなるべく多く把握する姿勢が求められます。

データ・アナリティクス入門

フレームワークで未来を拓く

3C・4Pの活用法は? 3C・4Pなどのフレームワークを活用して仮説を立てる重要性を改めて実感しました。なんとなく思いついた仮説では、他に考えられる可能性を見逃してしまう恐れがあります。一方で、フレームワークを用いることで、仮説の検証に必要な分析も効率よく進められるようになりました。 株式事務の仮説立案は? また、株式関連の事務においては、過去の経験や従来の分析結果に捉われず、さまざまな視点から仮説を立て、検証していくことが大切だと感じています。そのため、3C・4Pを活用し、複数の仮説を意識しながら業務に取り組むよう努めています。 実務検証の流れは? さらに、実際の業務では4P・3Cのフレームワークを使って分析を行い、課題に対して複数の仮説を出すことを徹底しています。そして、仮説の検証に必要なデータの抽出や分析も合わせて行うことを意識して作業を進めています。

データ・アナリティクス入門

集めて比べる、学びの第一歩

ライブ授業をどう捉える? ライブ授業を通して、分析においては「比較」が非常に重要であると改めて実感しました。限られた情報の中で考察を進めると、様々な視点が生まれる一方で、正確な回答を導き出せない場合もあることが認識できました。 データ準備の確認は? データ分析を実施する際には、まず必要なデータをしっかりと揃えることが不可欠だと学びました。新しいシステムの導入を検討する場合、価格、使用頻度、使用者の経歴、最も利用される時間帯など、複数のデータを準備し、事前に確認すべきポイントを絞り込む必要があります。 集計と比較はどうする? その上で、まずは確実にデータを集め、その後に集めたデータを比較しながら、必要な情報や懸念点を検討していくことが大切です。さらに、足りない情報がないかを意識しながら、新しいシステムに求められる要素を見極めるプロセスの重要性を再認識しました。

データ・アナリティクス入門

アンケート成果を活かすデータ分析術

アンケート設計のコツは? デジタル化を進めるにあたり、今後お客様アンケートを実施する予定があります。今週学んだことを活かして、アンケートの集計に役立てたいと考えています。アンケートには定性的および定量的な質問がありますが、定量的な質問に関しては、単に平均値のみでなく、中央値や最頻値も確認し、傾向やばらつきを把握することが重要です。質問を設計する際には、事前に仮説を立て、それを証明するための最小限の質問を設定することが求められます。 結果報告の工夫は? まずは直近のアンケート業務で学びを実践し、集計後にはそれをもとに報告を行う予定です。その際には、結果をどのようにビジュアル化して示すかを考慮します。単純に平均値や最も多い回答を示すだけでなく、仮説に基づいたアンケート設計により、得られた結果から示唆を引き出し、それに基づいて施策をストーリーとして検討することが大切です。

戦略思考入門

業界データと周辺情報で見つける成功戦略術

規制産業のデータ推測方法は? 業界データから個別企業の売上や利益を推測することを学びました。タクシー会社のような規制産業では特に、実務で手に入らない情報を周辺データから類推する習慣をつけていきたいと考えています。 手術機器市場の分析方法は? 私は、手術機器の医療機器メーカーのマーケティングを担当していますが、クリニックで手術が行われているかどうかの統計データがなく、これまであまり分析をしていませんでした。今回の演習を通じて、他のデータから類推できる方法を検討してみたいと思います。 2025年戦略の成功要因は? 2025年のマーケティング戦略立案時には、自社のビジネスの特性や業界の特性を理解し、フレームワークを活用して戦略を立てたいと考えています。その際、表面的な分析に留まらず、本質を捉えた分析を行い、社内のメンバーを巻き込みながら方向性をまとめたいです。

データ・アナリティクス入門

段階的アプローチで着実成長

講義で何を実感した? これまでの講義を通じて、分析のフレームワークや思考の順番をしっかりと理解することができました。段階を追って課題を解き明かすことで、最初から一気に取り組むよりも、より複雑な問題に対処できると実感しています。 課題設定はどう進む? データ分析の業務では、ただ急いで分析を実施するのではなく、まず解決すべき課題を明確にし、仮説を立てながら進めることが大切だと感じます。また、必要に応じてデータを扱う関係者と意見交換しながら検証を進めることで、より確実な結果にたどり着けると思います。 日々の工夫は何? 今後は、学んだフレームワークや仮説検証の流れを自分の言葉で他者に説明し、日々の業務に取り入れる工夫をしていきたいと考えています。小さな実践を積み重ねることで、自分の思考プロセスが自然に身につき、学びを習慣化できるよう努めていきます。

データ・アナリティクス入門

数字が語る成功への道

分析と代表値の使い道は? 分析の基本プロセスや代表値の種類について、非常にしっかり理解できています。実際の案件分析やKPIの見直しにおいて、売上、利益、譲渡額、成約期間など、各データのばらつきに応じて単純平均、加重平均、中央値などの代表値を使い分けることができています。また、ばらつきや2SDルールなども活用し、最適な視点からデータを分析している点が印象的です。 説明とKPIの関係は? 現状、データ分析の結果に基づいてKPIが作成・発信されているため、今後はその数値が目標となる理由を、メンバーがより納得できる図表を用いて可視化し、説明できるようにしていきたいと考えています。同時に、分析のプロセスにおいて、目的の明確化、仮説の設定、データ収集、そして仮説(ストーリー)の検証の手順を、メンバーが理解しながら適宜視点とアプローチを選択できるよう指導していく所存です。

クリティカルシンキング入門

データ整理の極意と深掘りのコツ

情報整理の重要性とは? 情報の分け方に漏れや重複があると、データの理解がぼやけてしまうことがわかりました。情報の分け方を工夫することで、伝えたいことをより明確にすることができます。また、漏れや重複は一度書き出して整理するとわかりやすく感じました。 効率的な分解方法を探る 全体像と把握したいことを明確にしたうえで分解に取り掛かるようにし、その際はいろいろな視点や切り口で考えられるように、まず書き出して整理してみます。分解後のデータを見て、他の視点や切り口がないかさらに深掘りしてみることも重要です。 問題分解の実践法を学ぶには? 問題分解の実例を知り、一度自分で解いてみることで習得しました。特にプロセス分解は頭で理解していると疎かになりがちなので、ステップごとに分解をして一つひとつ深掘りしてみます。また、書き出して整理する習慣も習得したいと感じました。

クリティカルシンキング入門

伝わる工夫で魅せる資料づくり

目的を見失わないには? 適切なグラフの見せ方について、目的を見失わず、相手に分かりやすく提示することの重要性を再認識しました。文字の表現では、色使いや強調すべき部分に工夫を凝らし、全体の体裁を整えることが大切です。相手にしっかり伝わるよう、工夫を重ねた資料作成を目指しています。 報告資料はどう伝える? また、各種アンケート結果の報告や費用のトレンド管理、さらには数値以外の報告資料についても、読みやすい資料作成が求められます。部下が作成した資料のチェックの際や、大事な会議・役員へのプレゼンテーション用資料の作成時には、数字を用いた報告の場合、目的やデータの意味をしっかりと理解し、目的に合ったグラフを選択することが不可欠です。グラフのタイトルはもちろん、単位やグラフ内の数値表示にも十分注意を払い、体裁を整えた、読者に伝わりやすい資料作りに努めています。

データ・アナリティクス入門

ステップで変わる!問題解決力の磨き方

ステップを踏んで考える重要性 分析する際には、大きな点だけに焦点を当てず、ステップを踏んで考えることが重要です。ロジックツリーを活用することで、大きな問題を細分化して俯瞰できます。この手法により、自分だけでなく他の人も問題点を理解しやすくなり、様々な角度から物事を捉えられるようになるでしょう。 「なぜ」にとらわれない方法とは? 「なぜ」に注目しがちですが、大きな問題を細分化して捉えることで、複数の解決策を見つけることが可能です。ビッグデータの中から、どの数字を分析対象にするかを目的から逆算して決定することが必要です。 ビッグデータ分析の始め方 まずは、ビッグデータを理解しましょう。そこから目的を定め、分析すべき数字を選びます。ロジックツリーを利用して異なる方向からのアプローチも試みると、違う視点から全体を見渡し、新たな発見が得られるかもしれません。

クリティカルシンキング入門

分析の視点で新たな発見を振り返る

分析における多角的視点の必要性 データの分類や分析において、偏りのないように複数の切り口を考えることの重要性を感じました。そして、そこから生まれたインサイトが本当に正しいのか、網羅的に考えられているかを見極める必要もあると理解しました。これは実務でも同様で、仮説に基づいて行動する際、その仮説が正しいかどうか、考えに漏れがないかを確認することが非常に大切だと思います。自身の業務に限らず、さまざまな業界の分析を行う際にも、抜け漏れがないように、その都度確認する必要があると感じました。 データ再分類のアプローチは? また、異なるプロジェクトにおいても、共通点やどのように分類できるかを常に言語化するスキルを身につけたいと考えています。過去のアウトプットに関しても、新たな切り口でデータを再分類できないかを模索し、再検討とアップデートを続けていきたいと思っています。

「データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right