戦略思考入門

限られた資源で成果を出す秘訣

優先順位はどう判断? 限られた資源で成果を最大化するためには、まず優先順位を明確にして、取り組むべきこととそうでないことを判断することが重要だと感じました。 断捨離の決断は? また、何かをやめる際にはエネルギーが必要ですが、現状が本当に最適かどうかを中長期的かつ全体最適の視点で客観的に検証し、データに基づいて判断することが求められます。必要と判断した場合は、勇気を持って決断することが大切です。 作業の見直しどう? 日々の業務の中では、ただ習慣として続けていることや無駄な作業がないかを常に確認し、他の方法で代替できないか、または廃止できないかを見直すことが必要です。 業務配分は最適? さらに、生産性向上が求められる現状においては、限られたリソースをより効率的な業務に配分するため、客観的なデータを活用して何を選択し、どの業務を見直すべきかを検討し、その結果を事業計画に反映させていきたいと考えています。

クリティカルシンキング入門

イシュー設定が成功への鍵と実感した学び

イシューを具体化するには? イシューの設定が課題解決において重要であることが身をもって実感しました。特に、問いを明確かつ具体的に設定し、全体の前提や認識をそろえることが不可欠です。また、イシューを設定した後も、常にその意識を持ち続けることが大切です。議論や思考が途中でそれないようにするためです。 営業マネジメントにおける効果的なサイクル 営業マネジメントにおいては、数値達成や業績向上のために、適切なイシュー設定と、その解決策を検討・実施するサイクルが求められます。今回学んだ内容は、自チームのイシュー設定から数値改善まで、実践で試してみる価値があると感じました。 データ活用の力をどう身につけるか? 課題解決に際して何をイシューとするのか、これまでの数値データを活用して見極める力を習得したいと考えています。そのため、改めてデータを整理し、ピラミッド・ストラクチャーを使って、イシューの書き出しと整理を進めていきます。

データ・アナリティクス入門

仮説検証で開く課題解決の扉

本質はどう捉える? 問題解決プロセスでは、「何が問題なのか(what)」「どこに原因があるのか(where)」「なぜその問題が発生しているのか(why)」の3点に対して、徹底的に検証することが重要であると学びました。 原因をどう探る? また、whyの部分については、3Cや4Pといったフレームワークを活用することで、より具体的な原因の特定と分析が可能になることが印象的でした。各アプローチにおいて、仮説を立て、既存または新規のデータを用いて検証する作業が鍵であると感じています。 新たな視点は? 特に、売上データの結果は複合的な要因が重なっており、一概に原因を絞るのは難しいという現実があります。それにも関わらず、自分なりにここが原因だろうという仮説を立て、検証を通して新たな視点や解決策につなげることの重要性を実感しました。今日学んだフレームワークを活用しながら、今後もさまざまな課題にチャレンジしていきたいと思います。

データ・アナリティクス入門

仮説と比較で見える成長の軌跡

A/Bテストの見直しは? 業務において、あまり考えずにA/Bテストを実施していたことに気づきました。今後は、企画段階からバイアスを取り除く方法を模索し、比較のためのベースラインを整えることに留意したいと考えています。仮説に基づいてどのように探索を進めるかが鍵となり、改めて分析は「比較」が非常に重要であると実感しました。 フレームワーク活用法は? また、これまで学んだフレームワークや考え方(3C、4Pなど)を積極的に取り入れていきたいと思います。習得がすぐにはいかなくても、慣れるまで継続して実践し、しっかりと身に着けていく所存です。 データ分析はどう行う? さらに、A/Bテストを実施する際には、可能な限りランダマイズすることや、比較に必要なサンプル数や実施期間を十分に検討することが重要だと感じました。分析時にも、どのような背景や手法でデータが収集されたのかを意識しながら、より正確な評価を行えるよう努めていきます。

クリティカルシンキング入門

MECEで広がる分析の世界

分析計画の狙いは? MECEを意識して分析計画を立てることの重要性について学びました。分析はまず大局的な視点から始めることが大切です。傾向を掴んだとしても、それが必ずしも正しいとは限りません。そのため、正確性を確認するために、必要に応じてさらに詳細に分解する必要があると感じています。 分解の意味は何? 実際に行っているデータ分析について考えたところ、MECEを満たしているようではあったものの、それを意識的に行うことはできていませんでした。分析のスタートポイントとして分解を意識して、分析計画を立てる必要があると強く感じました。 感覚分析の問題点は? これまでの分析は感覚的に行っていた部分がありました。分析計画は立てていましたが、分解に着目するということが不足していました。解がスタート地点であることを学んだので、今後は分析計画の段階で、MECEなど今回学んだロジックに沿って計画が立てられているかを確認していきます。

データ・アナリティクス入門

実践で磨く!データ活用のヒント

学びはどんな感じ? これまでの学習を通じて、データ分析の基礎から実践的な活用方法まで、一連の流れを体系的に学ぶことができました。単なるデータ処理にとどまらず、どのように課題を設定し、仮説を立て、検証するかという思考プロセスの重要性を改めて実感しました。 重要な点は何? 学習内容を振り返る中で、自分にとって重要なポイントを再確認することができました。今後は、業務の提案文書作成時に、分析を活用して根拠を明確に示す取り組みを進めたいと考えています。また、日頃から目にするデータがどのように役立つかを意識する習慣を身に付けたいと思います。 次への一歩は? さらに、知識の定着を図るため、学習を終わらせずに統計検定の取得を目指すとともに、業務での分析においては各種フレームワークを適用し、実践で活かしていきます。具体的には、営業店の業務負荷の要因分析を実施し、仮説を立ててデータに基づく検証を行いたいと考えています。

データ・アナリティクス入門

復習と分析で磨く未来のスキル

授業で何が足りた? ライブ授業を通して、学んだ内容が実際には抜け落ちていると感じることがありました。日常にうまく落とし込めず、知識が血肉になっていないため、再度復習する必要性を強く感じています。一方で、学習初期から具体的な指針があったおかげで、課題に対して何をすべきかが明確になり、その成長を実感できた面もあります。 分析で自信は得られた? また、採用状況の分析は、初めから取り組んできたこともあり、これまでの経験が自信につながっています。繰り返し実践する中で、数字を扱う技術をさらに磨けると感じており、新たなデータにも積極的に取り組みたいと考えています。 異動後の数字はどう変わる? この春に異動があり、新しい職場でどのような数字に触れることになるのかはまだ不明ですが、現職場ではこれまでの分析手法がレガシーとして共有されています。新たな環境でも、数字を扱うスキルを引き続き活かし、積極的に取り組んでいきたいと思います。

データ・アナリティクス入門

実務で活かす!徹底復習のススメ

なぜ復習が大切? 学んだ内容は、1週間前のものはすぐに思い出せる一方、1か月前のことはすぐに再現できないと実感しました。このことから、インプット、復習、そしてアウトプットの重要性を改めて学び、机上の学習にとどまらず、実務に活かす目的を持って本講座全体を自己復習しようと考えました。 どこから手を付ける? また、データビジネスやロジカルシンキングが未経験のメンバーには、いきなりドメインの詳細な説明をするよりも、入りやすい内容から始めるのが効果的であると感じました。具体的には、比較を用いた分析や、データ分析のプロセス、問題解決のステップなどが、そのヒントになり得ると考えています。4月以降の職務管掌は未定ながら、少なからず人材育成に関わる予定です。そのため、まずは本講座全体を自身で復習し、業務に必要な知見をピックアップしておくとともに、必要に応じてアウトプットすることで、自らの復習と組織全体の底上げを図りたいと思います。

データ・アナリティクス入門

比較のレパートリーを増やす意味

分析の目的は何か? 人によって着眼点が大きく異なるため、自分が分析したい目的や伝えたい相手の視点に沿った比較対象を見つけることが非常に重要であると学びました。受講前は、分析手法やデータ収集、整理が重要と考えていましたが、実際には目的設定や比較軸の決定がより重要であると感じました。 営業での活かし方は? この知識は、他者との提案時の競合価格比較や、営業時の他社比較資料の作成に役立つと考えています。特に営業現場では、価格以外の定量的な部分でどれだけ差異をつけられるかが非常に大切です。このような場面で活用していきたいと思います。 比較軸をどう増やす? まずは比較軸のレパートリーを増やすことを目指します。今回の講座で学んだ、特定条件の有無による比較に加え、他の方の意見や視点を積極的に取り入れ、より多くの軸を自分の中に取り込んでいきたいです。そうして得た軸を活用し、より目的に合ったものを選定できるよう努めていきます。

データ・アナリティクス入門

全体をとらえるデータの物語

全体像と仮説の関係は? データ分析に取り組む際、単にあらゆる情報をむやみに収集するのではなく、全体のストーリーを大切にすることが印象に残りました。アウトプットのイメージを持ってデータ収集を行うと、目的に沿った情報が得やすく、分析の方向性も明確になります。また、仮説を立てる際には、フレームワークを活用することで多角的な視点から仮説を検討できますが、その検証に必要なデータは個々のアプローチによって異なるため、どの視点から何を分析するのか、目的を明確にすることが重要であると感じました。 データ収集のポイントは? 現場でデータを収集する方法として、アンケート調査やヒアリングが主な手法として挙げられます。アンケート項目を作成する際には、その趣旨を明確にし、複数の仮説と全体のストーリーに沿った質問を工夫することが求められます。こうした意識を持って、目的に合った質問項目を作成し、データ収集に臨むことが重要であると考えています。

クリティカルシンキング入門

グラフで魅せる!分かりやすい資料作り

スライド説明はどうすべき? これまでの経験から、スライド作成の基礎が十分でなかったために、誤解を招く表現があったと実感しています。特に経営層への説明においては、数多くのデータを細かく伝えるのではなく、グラフや表を用いて視覚的に直感的な理解を促すことが求められます。今回学んだ内容を活かし、グラフにタイトルや単位、軸の原点を明示するなど、より伝わりやすい資料作りを心がけたいと感じました。 抽象と具体、どう調整? 一方で、シンプルな表現が過ぎると、具体性を欠き分かりにくくなる恐れもあるため、抽象と具体のバランスが重要です。今後は、WEEK4で学んだことをしっかりと振り返りながら、情報を整理し順序立てたスライド作成に努めます。また、社内での提案活動を通じて実践の機会を増やし、より多くの人に分かりやすいプレゼンテーションを提供できるように努めるとともに、若手メンバーにも効果的なスライド作成の方法を伝えていきたいと思います。

データ・アナリティクス入門

データでつかむ共感と納得

データ分析の意義とは? 「分析とは比較なり」と分かっていても、その意味を他の人に伝えるのは別の課題です。結果的に、データ分析の意味とは何を目的にし、どこに活かすかであると改めて実感しました。また、適切なデータ選びと結果の見せ方も理解に大きく影響を与えることを痛感しました。 分析結果をどう伝える? これまでのデータ分析は、自分が次の戦略を考えるために、自分が理解することを前提にしていました。しかし、考えたプランが良くても、納得や共感を得られなければ意味がありません。多くの人に理解される分析を心掛けるべきであると感じています。 経営戦略に重要なデータ選び データ分析のプロセスを含めて、しっかりと説明できることが重要な前提です。正しい経営戦略を考えるためには、どのデータを重視し、補足できるデータを選ぶかが鍵であり、会社の進むべき方向性を理解してもらうために、方向性を一致させる納得感の高いアウトプットを意識します。

「データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right