データ・アナリティクス入門

問題を見極める力が成長を促す

問題の本質は何か? 最初に重要なのは、「What(何が問題か)」をしっかりと見極めることです。具体的なデータを丁寧に集め、それを基に問題を特定することが肝心です。そして、問題を見つけた後は、その問題がなぜ起きているのか(Why)をよく考える必要があります。よくありがちなのは、「何が問題か(Where)」を見つけただけで、「どう解決するか(How)」に飛びついてしまい、WhatとWhyを飛ばしてしまうことです。これでは、解決策が不十分になることが多くなります。 直感に頼りすぎていない? このような経験から、私はしばしばWhatとWhyを深く考えず、直感に頼って行動しがちだと反省しています。たとえ直感的に問題や解決策が思い浮かぶとしても、しっかりと事実と原因を見極めた上で、効果的なHowを導き出すことを意識します。 データ収集と原因分析のステップ まずは、対象としている状況に関連するデータをしっかりと集め、実際にどこが理想的な姿と比べて差が大きいのかを検討します。次に、その問題の原因が何であるかや、その問題がどのような影響を及ぼすのかを考えます。原因を明確にし、その問題をどのように解決するかを考えることが重要です。このプロセスを日々の中で繰り返すことで、自分自身の考え方を確立していきます。

データ・アナリティクス入門

目的再確認で拓く未来

なぜ目的は大切? 分析とは、比較を通して物事を評価するプロセスです。まず、データ収集や具体的な分析を始める前に、はっきりとした目的を設定することが不可欠です。目的が定まらない分析は、結果として次の行動に結びつかず、単なる数字遊びになってしまうリスクがあります。 どのように対象を選ぶ? そのため、目的を明確にし、適切な対象を選ぶとともに、多角的な観点から正しく比較することが大切だと考えます。データ分析に入る前に一度立ち止まり、目的に立ち返る余裕を持つことが、成功への第一歩となります。 どのように傾向を見る? 具体的には、顧客の属性データやアンケート結果から傾向を読み取り、次月以降の施策に役立てています。また、自身の働き方に関しても、どの業務にどれほどの時間を費やしているかを他者と比較し、業務効率の向上を図っています。 どうやって振り返る? このため、毎週金曜日に10~15分間の業務棚卸しの時間を設け、週次および月次での振り返りを実施しています。さらに、1on1などの機会を通じて、業務時間の使い方について他者から意見を聴取し、比較することで、より実践的な改善策を模索しています。一方で、対顧客の分析に関しては、常に目的を再確認し、施策ありきの分析にならないよう注意を払っています。

データ・アナリティクス入門

同条件で実感!比較のヒント

どうして比較するの? 分析の基本は「比較」にあります。しかし、比較を行う際には、正しい対象同士を照らし合わせなければ、正確な結果は得られません。たとえば、単に全体の平均値を比べるのではなく、同じ条件下(Apple to Apple)での比較を意識することが重要です。具体的には、ある施策の効果を評価する場合、対象は施策を受けたグループと、受けていないグループに限定し、その効果が明確に反映されるように設定する必要があります。また、比較を行う際は、外れ値の有無やデータの対象数、そして分析の目的に沿った比較がなされているかどうかにも注意を払うことが求められます。 比較の実践はどう? 現在、売上やマーケティングの集計そのものはしていませんが、常に「比較」を意識しながら、比較対象が正しいかどうかを確認する視点を持つよう心がけています。目的に合った分析であるかを常に考え、比較した結果をどのように的確に示し、他の人にわかりやすく伝えるかという点が大切だと思っています。 結果提示の工夫は? 今週の学習内容については、特に疑問に感じた点はありませんでした。ただし、グラフや推移グラフ以外の方法で、他の人に理解しやすい分析結果の提示方法について、どのような工夫がされているのか知りたいと感じています。

データ・アナリティクス入門

比較と目的で開く新発見

何を比較すべき? 分析について学んだことは大きく3点あります。まず、分析は何かと何かを比較することで初めて意味を持つという点です。単に数値を並べるだけではなく、比較対象を明確にすることで発見が生まれます。 目的は何か? 次に、分析には明確な目的が必要であるということです。目的がはっきりしていなければ、どの数値を見て何を判断すべきか分からず、結果として行き当たりばったりな分析になってしまいます。 チーム連携はどう? そして、チーム内でのコミュニケーションの重要性です。分析に取り組む際は、目的や比較する基準についてメンバー全員で認識を合わせることが不可欠であると実感しました。 業務の実態は? 私の担当業務は中小企業向けのインサイドセールスの運営です。日々、コール数、コール時間、商談化数、受注数といった指標の管理に努めるとともに、受注商材の傾向やメール配信からの顧客獲得状況なども活用しています。これらのデータを比較する際には、まず各項目の条件が揃っているか、そもそもの目的は何かを確認することを常に意識しています。 成果向上のヒントは? 今後は目的や比較基準の確認を徹底し、チーム全体で正しい分析の考え方を共有して、より成果が出る体制を築いていきたいと考えています。

データ・アナリティクス入門

仮説と現場で読み解く数字の物語

現場で何が起きる? 平均値などの代表値を把握するだけではなく、現場で実際に何が起きているかを想像しながらデータに向き合うことが大切です。そのため、自分自身で仮説を立て、仮説検証型で分析を進めることが求められます。分析の目的に応じて比較する対象も変わるため、たとえば「夏の気温は本当に上昇しているのか」という問いに対して、単純に1年前のデータや他の地点のデータと比較するだけでは、十分な答えは得られにくいでしょう。 ビジュアルで何が分かる? また、代表値の理解をより精緻なものにするために、データのビジュアル化を試みることが重要です。第三者に伝えるときだけでなく、自分自身で数値を分析する際にも、数字だけでは見逃しがちな現場の情報に焦点を当てるため、ビジュアル化の活用を心がけましょう。 AI活用はどう役立つ? さらに、医療施設ごとの売上や従業員ごとの活動履歴など、大量かつ複雑なデータに関しては、定型的な加工に陥りやすい傾向があります。まずはデータの分布を把握するためのビジュアル化を行い、分析の目的に合ったデータの特徴を考察する時間を確保することが推奨されます。このプロセスにはAIの活用が有効であるため、迅速に作業に取り掛かれるよう、使用するプロンプトをあらかじめ保存しておくと便利です。

データ・アナリティクス入門

要素分解が開く学びの扉

分解と分析はどうする? 分析を行う際は、まず対象を要素に分解することが重要です。ロジックツリーやMECEの考え方を活用し、問題解決のステップとしてWhat、Where、Why、Howに分けることで、あるべき姿と現状、そして現状と理想のギャップを正確に把握できるよう心がけています。 店舗のギャップは? また、実務の現場では、宿泊客のデータ比較や社内の研修で、グループ内の各店舗のありたい姿を設定し、現状とのギャップを店舗ごとに分析する取り組みが行われています。このような分析により、各店舗の改善点が明確になり、実効性のある対策が立てられるようになっています。 研修資料はどう整える? さらに、新入社員向けの研修資料作成においてもMECEを意識し、内容を整理することが求められています。現状、社内向けの資料が十分に整備されていないため、今回学んだことを活用して、より実用的で分かりやすい資料作りに努めています。 口コミ低評価をどう克服? 口コミ評価が低い店舗を訪問する場合、現状とあるべき姿のギャップを3つ以上洗い出し、具体的な改善点を見つけることが求められます。初回の動画視聴だけでは本質を理解しきれないため、何度も視聴しながら自分の手でメモを取ることで、理解と記憶の定着を図っています。

データ・アナリティクス入門

データ分析で社会課題を解決する心得を学ぶ旅

分析の本質を学ぶ意義とは? 講義開始直後から、分析の本質について明確に示されるので、動画の解説が頭にスラスラと入りました。まず、分析の本質は「比較」であり、適切な対象を比較することが重要です。迷ったときは、分析の目的に立ち返ることが大切で、その際にはデータに偏りがないかどうか、「生存者バイアス」に注意することが求められます。このように、6週間の講座を通じて、最も重要な「心得」を学ぶことができました。 仮説設定の流れをどう進める? 私は、社会課題に対する「仮説」をもとに、行政などのオープンデータを分析し、数字的な事実を裏付ける仕事をしています。今回は、体系的にデータアナリティクスを学ぶことで、仮説設定や分析対象の選定をスムーズに行いたいと思いました。 データ分析の実践ステップとは? 具体的には、以下のアクションを実行しようと考えています: - データ分析について、チーム内に基礎的な知識を共有する。 - チームメンバーが取り組んでいる社会課題に関連するオープンデータを収集する。 - 仮説を洗い出し、それを裏付けるための数字を設定する。 - 適切な比較対象をピックアップする。 このような手順を通じて、社会課題の解決に向けた効果的なデータ分析を進めていきたいと思います。

データ・アナリティクス入門

データが拓くビジネスの未来

分析の本質とは? 分析とは、物事を分け整理することと、比較対象や基準を設けて比較することの両面が本質だと感じました。また、データ分析の目的や、どの項目をどのような形であたりをつけるのかという入り口の考え方も学べ、基本的な考え方がしっかりと理解できたと実感しています. 将来の分析戦略は? 今後は、顧客IDを活用して、CRM、Web行動、イベント、購買実績の時系列統合基盤を構築する力を高めるとともに、ビジネスゴールを離脱点や購買シグナルなどの具体的な分析課題に落とし込むスキルを向上させたいです。また、転換率やLTVなどのKPIを定義し、ダッシュボード上でリアルタイムに可視化しながら、閾値やアラートを設計する能力も伸ばしていく必要性を感じました. 実行計画はどう? 具体的な行動計画としては、まずCRM/MAの構造とAPIについて学び、ダッシュボードの運用や自動連携が自在に行えるレベルまで習熟することを目指します。次に、顧客ID基盤を活用してデータの抽出と整形を行い、分析用CSVを定期的に生成できる仕組みを構築します。さらに、RやPythonを用いた回帰分析やクラスタリングなどの手法を実施し、得られた示唆を速やかに施策へと反映できるサイクルを確立する方針です.

データ・アナリティクス入門

物流の待機料問題を解決する分析手法の習得

分析の基本とは? 「分析とは比較である」という教えについて学びました。これは、課題を要素に分解して整理し、個人や会社の状況に応じた基準(目的)を設けて、その要素と基準を比較することを意味しています。基準を「達成すべき目的」とすると、各要素の優先順位や捨てるべきところが明確になってくると感じました。逆に、基準に満たない要素は改善策の検討対象として捉えることができることも学びました。 物流業界での分析方法は? 私は物流会社で働いており、2024年問題の一つとして「待機料」の明確化が挙げられます。待機という問題を要素(要因)に分解し、それらを自社都合と輸送会社都合にグループ化することで、分析の対象が明確になると考えました。 データ活用で何が変わる? 現在、導入済みのアプリから取得できるデータを使い、要素を整理して分析対象を決定する予定です。本講座を通じて、適切な分析方法を理解していこうと考えています。 待機料と時間の相関は? 具体的には、待機料の標準偏差値を算出することで支払い金額の正常範囲を決定し、異常値はチェックする体制を構築します。また、待機料の発生要因と待機時間の相関関係を数値化し、どの要素に対して改善策を打つべきかを社内で共有します。

データ・アナリティクス入門

市場を読み解く!成功する仮説の立て方と活用法

3Cと4Pの学び方は? 3C(市場・顧客・競合・自社)と自社を細かく検討するためのフレームワークである4P(製品・価格・場所・プロモーション)の関係について学びました。これにより、市場分析がより具体的かつ体系的に行えるようになります。 仮説を複数立てる意義とは? また、仮説の立て方についても学びました。仮説は一つではなく、複数立てることでその有用性が証明されやすくなります。仮説には問題解決のための仮説と結論の仮説があり、それぞれの役割が明確です。 新卒市場での戦略は? 例えば、新卒市場での人材獲得では、採用実績校と定着性を数値化し、学校訪問や求人活動を行うことで、技術系就職担当教授やキャリアセンターの職員に対する認知と共感を得る可能性が向上します。これにより、相関関係が期待できる重点対象校へのアプローチが効果的になります。 中国・四国エリアでの具体的な活動 具体的には、中国・四国エリアの国立高専(香川、阿南、新居浜、高知、呉、宇部、米子、松江、津山)を対象に、卒業生名簿と直近3~5年間の実績データをもとに学校訪問を行います。特に、内々定者がいる学校には個別情報を対面で提示し、認知と共感を高めるよう働きかけることが重要です。

データ・アナリティクス入門

データ分析の魅力に触れる旅

なぜ目的を決めるのか? 「分析とは比較なり」という言葉が分析の基本を表しています。まず、比較を行うための目的をしっかりと決定し、その目的に合った適切な比較対象を選ぶことが重要です。そして、得られた比較結果をどのように視覚化・言語化して伝えるかも、分析の重要な要素です。これらが全体的に連携し、一つの体系としてまとまっていることで、分析は効果的に行われます。各ステップで適切な判断を行うことにより、データ分析は精度を上げることができます。 有効なデータの活用法とは? プロジェクトの進捗状況の把握や遅れの可視化と原因分析、製品の製造データの分析、それを基にした工程改善案の提案、さらに最終製品の性能・品質データの分析とそのトレンドの原因の把握など、それぞれの場面で明確な目的と最終的な活用イメージを持って分析を行うことが重要です。これによって、効果的なデータ分析の結果を示すことができるでしょう。 データ収集から始めるには? 特に最終製品の性能・品質データの分析には豊富なデータがあり、因子もある程度特定されています。自らがデータを入手しやすい立場にあるため、早速データを集めて分析を進めていこうと思います。まずはデータの収集から始めてみます。

デザイン思考入門

本音に迫る新人研修の裏側

研修の成果はどこで感じる? 新人研修企画に向け、複数の社員に対してオープンエンドな質問を行い、今年1年の振り返りや研修会に対する印象など、豊富な定性的情報を引き出すことができました。中には「正直覚えていない」「配属されてからでないと分からない」といった回答もあり、知識のインプットは十分ながら実体験が伴わないため、研修がその場限りになっているという共通の課題が浮かび上がりました。 調査の難しさは何だろう? 一方、調査自体はまだ始まったばかりですが、対象者自身が気づかないような暗黙知にまで踏み込むのは非常に難しいと感じました。自身の仮説を提示し、それに対する意見は得られるものの、一歩踏み込んで本音の課題を引き出すためには、相手の領域やコミュニティに深く入り込む必要があると実感しました。 定性分析の説得力はどうする? また、定性分析はどうしても恣意的なまとめ方になりがちで、説得力に欠けるという懸念がありました。これに対して、定量分析で明らかになった結果は一般的すぎる面があるため、数値以外の情報を加えた上で、定性的な情報の根拠として定量データを補完的に用いることで、より説得力の高い分析が実現できるのではないかと考えるようになりました。

「対象 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right