データ・アナリティクス入門

データで解き明かす!仮説立案の極意

仮説の種類と意義を知る 仮説とは、ある論点に対する仮の答えのことを指します。仮説には目的に応じて「結論の仮説」と「問題解決の仮説」がありますが、その中でも仮説は様々なフレームワークを用いて複数用意する必要があります。検証方法としては、データ収集が重要であり、目的対象を検討した上でアンケート調査や口頭調査を行うことが有効です。 打ち手を選ぶ際のフレームワーク活用法は? 業務に活用できる場面としては、打ち手の検討があります。問題解決のためにどの打ち手が効果的かを考える際には、フレームワークを用いてどこに効果があるかを検討することが求められます。ブレインストーミングから打ち手を選定する際にも、枠組みから検討し、その打ち手の効果測定や仮説作りのためのデータ収集が必要です。 フレームワークで複数視点を持つには? 複数の仮説を持ちながら物事を検討することは重要です。フレームワークを活用することで、様々な視点から会議に参加する準備が整います。そのためには、フレームワークの知識を習得し、何が論点になっているのかを正確に確認することが必要です。 データ検証の質を高める手法 データ検証の項目を洗い出す際には、目的が曖昧なままアンケート調査を行うのではなく、目的を明確に定め、それに沿った項目や枠組みを検討しながら実施することで、質の高い結果が得られます。

データ・アナリティクス入門

プロセス分解で業務改善の新たな一歩

プロセス分解の重要性とは? 問題の原因を探る方法として、プロセス分解が非常に有効である。例えば、広告であれば表示からクリック、クリックから申し込み(コンバージョン)といった形で細かく分解することができる。また、解決法(HOW)を検討する際にはA/Bテストが有効である。この方法では、比較対象以外の条件を揃え、目的を明確にすることが重要である。 数字だけではわからないことは? 現在の企画管理業務では、出てきた数字だけで分析や判断をしてしまうことが多い。しかし、出てきた数字の要因がどこにあるのかを探るためには、細かいプロセス分解ができなくても、大枠でのプロセスに分けて見ることができるのではないかと考えた。今回の講義を通して、A/Bテストの有効性を学べたが、A/Bテストの範疇を超えた検証(生産プロセスの改善や販売における改善検証)のやり方についても学びたいと思った。 データ分析の効率化をどう進める? 講義では、身近なデータを使ってプロセス分解を行う方法について触れられた。日々の業務におけるデータ分析のスピードアップや、分析に十分な時間を確保できているかを検証する必要を感じた。具体的には、データ収集、データ加工、分析、共有にそれぞれどれくらいの工数がかかっているのかを明確にし、さらに効率化して、より早く深い分析と共有を実践できる方法を探りたい。

データ・アナリティクス入門

分析力で交渉力を高める秘訣

比較の重要性をどう捉える? 分析の本質は比較にあります。条件を揃えて比較することが重要であり、この際、目の前の情報に引っ張られないよう注意が必要です。また、目の前にないものについても、目的に照らして何と何を比較するべきかを見極めることが重要です。最終的に、分析によって明らかにしたいことを明確にし、その目的に沿った比較対象を選定することが求められます。 交渉をどう深める? 私の場合、データを直接使用する仕事ではありません。しかし、交渉事の割合が多いため、この考え方を活用したいと考えています。例えば、説明や交渉時に事実を列挙することは重要ですが、それだけでなく、「もしそれがなかったらどうだろう?」といった異なる前提を考慮に入れた論理構成を加えることで、説明や交渉に深みを持たせたいと考えています。 分析に必要な視点とは? 抑えるべきポイントは以下の通りです。まず、目的を明確にすることです。今までの行動パターンでは、調べて比較するというアクションをとっていましたが、結果的にただ彷徨い、同じ場所をぐるぐるしているだけでした。 見えない情報をどう扱う? さらに、目に見えない情報も考慮する必要があります。目の前の情報だけで判断すると、ありきたりで的外れな結論に至ってしまうことがあります。正しい分析方法を身に付けたいと強く思っています。

データ・アナリティクス入門

仮説が導く実践の分析術

目的設定は正しい? データ分析は、単に比較するだけではなく、まず目的を明確にし、自分なりに仮説を立てるところから始まります。仮説に基づいて分析作業を進め、その結果から具体的な示唆を得る一連の流れを意識することが重要です。 比較条件は合ってる? また、比較対象とする対象の条件を揃えることが不可欠です。この前提が誤っていると、適切な分析が行えなくなるため、比較対象に問題がないかどうかも注意深く判断する必要があります。 採用現場でどう役立つ? 採用活動の現場では、以下のような場面でデータ分析が役立つと考えています。まず、エージェントや媒体の成果を基にした母集団の形成。次に、面接の実施率や内定承諾率など、候補者起因の歩留まり改善。そして自社の採用活動全体のパフォーマンス管理や改善点の発見、さらには新たなサービス導入の検討時にも活用できるでしょう。 集計方法に再考は? 現状、応募数や内定数など各選考フェーズでの実数や展開率の集計は行っていますが、そのデータの取り方が最適かどうか、また他により良い集計方法がないか再検討する余地があると感じています。さらに、定量的な成果を示すことで、他部門への説得材料とする狙いもあり、現状の課題、例えば選考のリードタイムの短縮などについて具体的に提示し、改善に向けた会議を進めていきたいと考えています。

データ・アナリティクス入門

分析で見つける未知の可能性

分析開始の目的は? 実際に分析を始める前に、その分析の目的を明確にすることが重要です。目的が曖昧では、分析自体の意味がなくなります。分析の本質は比較にあります。比較を行わなければ、物事の良否を判断することはできませんし、絶対的に良いものや悪いものというものも存在しません。意思決定が相対的な比較によって行われると考えると、分析(比較)の重要性が一層理解されます。 比較対象の選び方は? そのためには、適切な比較対象を選ぶことが必要です。しかし、すべての情報を持っているわけではなく、自分の理解が正しいかもわからないため、この作業は現実としては難しいこともあります。 解決すべき課題は? 分析を通じて解決したい課題は多岐にわたります。たとえば、効果的な授業や学習方法を知りたいとき、また生徒募集活動をどの地域で積極的に行うべきか、生徒や保護者の学校への満足度、勤務校の強みと弱みの分析などです。これらの目的を達成するために、適切な分析を行うことが望ましいです。 どんなデータ収集? まずは、各目的に応じたデータ収集から始めたいと考えています。生徒の成績推移や大学合格実績といった定量分析に加え、アンケートやインタビュー(個人・集団)による定性分析も通じて、データを集め、その中から中核となる特質を抽出するようにしたいです。

データ・アナリティクス入門

データ分析で見る成長のカギ

比較の重要性って何? 分析の本質は比較にあり、効果を測定するためには、「Aがある場合」と「Aがない場合」を比較することが重要です。ただ「Aがある場合」だけを見ても、その効果を正確に測定することはできません。そのため、分析の目的に沿った適切な比較対象を選定し、分析したい要素以外の条件を整えることが必要です。この考え方を「Apple to Apple」と呼びます。 施策効果の見極め方は? 販促施策の効果を分析する際には、イベントやDM、SNSなどさまざまな方法がありますが、以前はアクションがあった顧客の反響のみを分析していました。今後は施策を行っていない期間の販売実績とも比較し、何をもって目標達成とするかを明確にして企画を立案します。データ分析を行う際には、まず分析の目的やゴールを明らかにし、どの情報を比較すればよいかを検討してから分析を進めなければなりません。 条件整理のポイントは? 「Apple to Apple」の原則に従い、分析対象以外の条件が揃っているかを確認することが重要です。施策を進める際には、データを蓄積するためにさまざまな条件を整えられるように企画します。また、エリア別の顧客属性分析を行う際に、どの比較対象が適切であるかについては、部署に持ち帰って相談し、より明確にすることが推奨されます。

クリティカルシンキング入門

切り口で解く学びと発見

どう分解する? データを分解して理解するためには、対象を個々の要素に分けることが重要です。特に、When、Who、Whatといった切り口を活用することで、分析がスムーズに進むと感じました。問題に直面した際には、まずこれらの視点に当てはめることを意識する点が良いと思います。 分析は広がる? 今回の総評では、具体的な手法としてWhen、Who、Whatを用いながらデータを分解するアプローチが評価されています。さらに、より多角的な視点を持つことで、分析の幅が一層広がる可能性があると感じました。 他の切り口は? また、思考を深めるための問いとして、WHO、WHAT、WHEN以外にどのような切り口が考えられるか、またMECEに分解する際に意識すべきポイントは何かといった疑問が提示されました。これらの問いかけは、多面的にデータを観察する習慣を身につける上で大切だと考えます。 管理法はどう? プロジェクト管理においても、この手法は進捗管理や不具合管理に活かせるでしょう。既に使用しているツールの補助として、まずはWhen、Who、Whatを当てはめることを意識し、課題の抽出に役立てることができます。また、グラフ化も可能なデータ収集を心がけ、評価のポイントを事前に決めることで、より効果的な分析が期待できるでしょう。

データ・アナリティクス入門

データで挑む問題解決の旅

問題解決の順序はどう? 問題解決のステップとして、「What, Where, Why, How」の順序で進めることが重要です。やみくもに分析を開始するのではなく、順序立てて進め、数字に基づいたストーリーを構築することが求められます。データ分析においては、比較対象をはっきりさせ、集めたデータをしっかりと加工し、原因を特定する努力が重要です。 採用改善はどう進める? 採用手法を模索する中で、SNSや自社サイトの採用ページの改善を進めるには、コンバージョン率やファネル分析を活用して、離脱ポイントを特定することが有効だと考えました。それにより、コンテンツの見直しも可能になります。 企画提案の進め方は? このように分析を進める際は、初めに仮説を立て、結論のイメージを持つことが肝要です。何のために分析をするのか目的を明確にし、課題を特定するステップで進行することが大切です。特に、来年度に向けての企画提案の時期においては、データを活用して説得力のある資料を作成したいと考えています。そのために、データ分析の手法を復習し、自分自身の知識として確立する必要があります。また、データをさらに深く理解するためには、エクセルの関数についても知識を深めることが必要そうです。これについては、AIを活用し、日々学び続けたいと思っています。

データ・アナリティクス入門

比較で見える新たな視点

比較方法はどう決める? 分析の基本は比較にあります。分析対象をただ単に見るのではなく、相違点や類似点を明確にするため、対比できる条件を設定しながら進めることが重要です。 数値の意味はどう捉える? 定量分析を行う際は、単に数値の平均値や個数を求めるだけではなく、その背後にある意味を捉えることが求められます。例えば、男女のデータ分析においては、単位に数値を割り当てた場合の平均値そのものに意味はなく、それぞれのグループの人数や全体に占める割合を把握することで、ターゲットや戦略を導く上で有効な情報が得られます。 グラフの選び方はどうする? また、データの視覚化は、分析結果を他者と共有する際に非常に有効です。グラフを用いることで、複雑な情報も整理され一目でわかるようになりますが、データの特性に応じた適切なグラフ形式を選ぶことが大切です。 仮説設定をどう見る? さらに、分析においては、目的や仮説を明確にしてから着手する姿勢が重要です。分析する際は、比較対象となる条件を十分に整え、個々のデータに対してどの指標(個数、平均値、標準偏差など)を用いるかを慎重に検討することが必要です。自分が伝えたいメッセージと、相手がどの程度の情報を理解できるかを意識しながら、適切なグラフや表現方法を選ぶことも忘れてはなりません。

データ・アナリティクス入門

仕事が変わる学びのヒント

a/bテストはどう? 複数の打ち手が存在する場合、どの選択肢が有効かを判断する上で、a/bテストを活用する方法が効果的です。現状、すぐに取り入れられる業務は思いつかないものの、WEBサイトを活用した効果測定が必要な際には、積極的にこの手法を取り入れていきたいと考えています。 自己訓練の意義は? また、業務に限らず日常生活においても、what-where-why-howの視点を意識して自己訓練を重ねることで、分析能力の向上が期待できると感じています。 障害分析はどう? さらに、このwhat-where-why-howの手法は、障害分析から品質向上のための打ち手を検討する業務において、非常に有用です。さまざまなデータを収集し、仮説を立てながら具体的な対策を検討し、実践していくというプロセスは、日常業務においても積極的に取り入れていく所存です。 対象選定の方法は? まずは、打ち手が必要な対象の選定から始めたいと考えています。現状、日々さまざまな障害が発生しているため、効率よりもまずは障害が削減できる対象を明確にした上で、詳細な分析に取り組んでいくつもりです。そして、学んだ内容を個人のスキルに留めず、職場全体で共有することで、社内の共通ノウハウとして全体のレベルアップにつなげたいと思います。

データ・アナリティクス入門

仮説で読み解く成功のヒント

仮説の基本は何? 今回の学習で、仮説について深く学びました。仮説とは、ある論点に対して一時的に立てる答えのことで、例えば、ノンアルコール商品の販売増加を見る際、対象となる消費者をビールが好きな運転者や妊婦などに分けて分析する、といった考え方が応用できると感じました。 仮説の役割はどう? また、仮説には問題解決のための仮説と、結論を導くための仮説があることを理解しました。時間軸として、過去、現在、将来の視点で検討していくこともポイントでした。 売れる理由は何? 具体的な例として、①なぜある商品が売れるのか、または売れていないのかについての仮説では、若い世代に人気で刺激的ではない味が影響している可能性や、商品が不安定なために安定した需要を得られていないのではないかといった視点が挙げられました。②なぜある地域や取引先で売れるのか、あるいは売れていないのかを考える際には、その地域に若い人が多いのか、高齢者が多いのかという点が仮説の根拠になり得るという点が印象的でした。 検証データはどう活かす? さらに、仮説を検証するためには比較可能なデータ収集が不可欠であり、アンケートを実施する際の設問項目の考え方や、どのようなアンケート内容が仮説と結論を結びつけるのに適しているかという点にも関心を持ちました。

データ・アナリティクス入門

データ分析で結果を出すための工夫

データ分析の目的を明確に データ分析を行う際には、以下の点を重視する必要があります。 まず、分析の目的を明確にすることが重要です。分析の本質は比較にあり、適切な比較対象を選ぶことが求められます。そのためには、どのような項目をどのように分析するかという仮説を立て、それに基づいてデータを集め、分析することが必要です。そして、目に見えないデータや事象も考慮しながら、見せ方(例えばグラフなど)にも注意を払います。 マーケティング成果発表の準備は? 分析をする際の初めのステップは、「誰に」「何を」伝えるためにこの分析を行うのかを明確に意識することです。特に、次の期のマーケティング部門の成果発表で伝えるメッセージを考えるには、この意識が不可欠です。 来期施策に活かす分析のポイント 次に、来期の施策の布石となるメッセージを考えます。そのためには、まずどういうメッセージが良いかを考え、会社の方向性を確認します。その方向性とメッセージがつながっているかを検証した上で、どんな項目をどのように分析するのが適切かという仮説を立てます。実際にデータを集めて集計し、仮説の正しさを検証します。 このプロセスを通じて、有効と感じた施策や取り組みを数値的な裏付けをもとに発表し、来期の施策に活かしていくことが重要です。

「対象 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right