データ・アナリティクス入門

データで解き明かす!仮説立案の極意

仮説の種類と意義を知る 仮説とは、ある論点に対する仮の答えのことを指します。仮説には目的に応じて「結論の仮説」と「問題解決の仮説」がありますが、その中でも仮説は様々なフレームワークを用いて複数用意する必要があります。検証方法としては、データ収集が重要であり、目的対象を検討した上でアンケート調査や口頭調査を行うことが有効です。 打ち手を選ぶ際のフレームワーク活用法は? 業務に活用できる場面としては、打ち手の検討があります。問題解決のためにどの打ち手が効果的かを考える際には、フレームワークを用いてどこに効果があるかを検討することが求められます。ブレインストーミングから打ち手を選定する際にも、枠組みから検討し、その打ち手の効果測定や仮説作りのためのデータ収集が必要です。 フレームワークで複数視点を持つには? 複数の仮説を持ちながら物事を検討することは重要です。フレームワークを活用することで、様々な視点から会議に参加する準備が整います。そのためには、フレームワークの知識を習得し、何が論点になっているのかを正確に確認することが必要です。 データ検証の質を高める手法 データ検証の項目を洗い出す際には、目的が曖昧なままアンケート調査を行うのではなく、目的を明確に定め、それに沿った項目や枠組みを検討しながら実施することで、質の高い結果が得られます。

データ・アナリティクス入門

プロセス分解で業務改善の新たな一歩

プロセス分解の重要性とは? 問題の原因を探る方法として、プロセス分解が非常に有効である。例えば、広告であれば表示からクリック、クリックから申し込み(コンバージョン)といった形で細かく分解することができる。また、解決法(HOW)を検討する際にはA/Bテストが有効である。この方法では、比較対象以外の条件を揃え、目的を明確にすることが重要である。 数字だけではわからないことは? 現在の企画管理業務では、出てきた数字だけで分析や判断をしてしまうことが多い。しかし、出てきた数字の要因がどこにあるのかを探るためには、細かいプロセス分解ができなくても、大枠でのプロセスに分けて見ることができるのではないかと考えた。今回の講義を通して、A/Bテストの有効性を学べたが、A/Bテストの範疇を超えた検証(生産プロセスの改善や販売における改善検証)のやり方についても学びたいと思った。 データ分析の効率化をどう進める? 講義では、身近なデータを使ってプロセス分解を行う方法について触れられた。日々の業務におけるデータ分析のスピードアップや、分析に十分な時間を確保できているかを検証する必要を感じた。具体的には、データ収集、データ加工、分析、共有にそれぞれどれくらいの工数がかかっているのかを明確にし、さらに効率化して、より早く深い分析と共有を実践できる方法を探りたい。

データ・アナリティクス入門

仮説が導く実践の分析術

目的設定は正しい? データ分析は、単に比較するだけではなく、まず目的を明確にし、自分なりに仮説を立てるところから始まります。仮説に基づいて分析作業を進め、その結果から具体的な示唆を得る一連の流れを意識することが重要です。 比較条件は合ってる? また、比較対象とする対象の条件を揃えることが不可欠です。この前提が誤っていると、適切な分析が行えなくなるため、比較対象に問題がないかどうかも注意深く判断する必要があります。 採用現場でどう役立つ? 採用活動の現場では、以下のような場面でデータ分析が役立つと考えています。まず、エージェントや媒体の成果を基にした母集団の形成。次に、面接の実施率や内定承諾率など、候補者起因の歩留まり改善。そして自社の採用活動全体のパフォーマンス管理や改善点の発見、さらには新たなサービス導入の検討時にも活用できるでしょう。 集計方法に再考は? 現状、応募数や内定数など各選考フェーズでの実数や展開率の集計は行っていますが、そのデータの取り方が最適かどうか、また他により良い集計方法がないか再検討する余地があると感じています。さらに、定量的な成果を示すことで、他部門への説得材料とする狙いもあり、現状の課題、例えば選考のリードタイムの短縮などについて具体的に提示し、改善に向けた会議を進めていきたいと考えています。

アカウンティング入門

顧客価値を見直しビジネスを強化する方法

顧客価値の定義とは? ビジネスにおいて顧客に対してどのような価値を提供するかを明確にするためには、対象となる顧客(ペルソナ)をしっかりと定義することが重要だと学びました。顧客ペルソナが不明確だと、ビジネスを構築するのに必要な要素や資金の計画が立てられません。また、ビジネスの成果は損益計算書(P/L)で大まかに計算できますが、利益が出ていない場合の修正プランも検討する必要があります。この際、ビジネスが提供する基本的な価値は不変とすべきで、そこがぶれると「なぜこのビジネスを始めたのか?」という根本的な問題に直面する恐れがあります。そのため、修正プランについても価値への影響を考慮しながら検討することが不可欠です。 自社サービスの価値を再確認するには? 現在の業務においても、自社のサービスや自分の組織・チームがどのような価値を提供しているのかを再確認します。その価値が実際に提供できているかどうかを測定する基準としてKPI(重要業績評価指標)が定義されているので、その関係を正しく理解することが必要です。 まずは社内情報を含めて、自社製品が提供する価値や関連サービスの価値の認識が、自分の理解と合致しているかを確認します。もし差異がある場合は、その部分を修正します。また、KPIについてもその設定背景を正しく理解し、同様に確認を進めていきます。

戦略思考入門

経済視点で読み解く業務戦略

どうやって理解する? メカニズムの本質を理解することは大変重要だと感じました。自分の業務を具体的にイメージしながら、どのように活用できるかを考えることで理解を深めていきました。自業務の課題にどのように当てはめていくかは難しい面もありますが、外部環境や社内方針との整合性を見ながら、適切な視点を持つことが大切だと思います。 経済理論はどう活かす? 規模の経済性や範囲の経済の考え方については、特にコミュニケーション戦略でどのように適用すべきか悩む部分がありました。しかし、自社を取り巻く様々なステークホルダーに向けたコミュニケーションでは、「範囲の経済」の視点を活用して戦略を検討できるのではないかと感じています。この点については、チーム内でも意見を擦り合わせ、より具体的な策を練っていきたいと考えています。 ネットワークの使い道は? また、ネットワークの経済性に関しては、活用が難しいと感じたため、今後のディスカッションで他の受講生の意見を聞いてみたいと思います。 投資家戦略はどう? 現状の業務では新たなチームが形成され、社内外のコミュニケーションのターゲットがまだ定まっていませんが、特に投資家を対象としたコミュニケーションについては、来期から戦略を立案する際に「範囲の経済」の考え方を積極的に取り入れていこうと考えています。

データ・アナリティクス入門

データ分析で見る成長のカギ

比較の重要性って何? 分析の本質は比較にあり、効果を測定するためには、「Aがある場合」と「Aがない場合」を比較することが重要です。ただ「Aがある場合」だけを見ても、その効果を正確に測定することはできません。そのため、分析の目的に沿った適切な比較対象を選定し、分析したい要素以外の条件を整えることが必要です。この考え方を「Apple to Apple」と呼びます。 施策効果の見極め方は? 販促施策の効果を分析する際には、イベントやDM、SNSなどさまざまな方法がありますが、以前はアクションがあった顧客の反響のみを分析していました。今後は施策を行っていない期間の販売実績とも比較し、何をもって目標達成とするかを明確にして企画を立案します。データ分析を行う際には、まず分析の目的やゴールを明らかにし、どの情報を比較すればよいかを検討してから分析を進めなければなりません。 条件整理のポイントは? 「Apple to Apple」の原則に従い、分析対象以外の条件が揃っているかを確認することが重要です。施策を進める際には、データを蓄積するためにさまざまな条件を整えられるように企画します。また、エリア別の顧客属性分析を行う際に、どの比較対象が適切であるかについては、部署に持ち帰って相談し、より明確にすることが推奨されます。

データ・アナリティクス入門

比較で見える新たな視点

比較方法はどう決める? 分析の基本は比較にあります。分析対象をただ単に見るのではなく、相違点や類似点を明確にするため、対比できる条件を設定しながら進めることが重要です。 数値の意味はどう捉える? 定量分析を行う際は、単に数値の平均値や個数を求めるだけではなく、その背後にある意味を捉えることが求められます。例えば、男女のデータ分析においては、単位に数値を割り当てた場合の平均値そのものに意味はなく、それぞれのグループの人数や全体に占める割合を把握することで、ターゲットや戦略を導く上で有効な情報が得られます。 グラフの選び方はどうする? また、データの視覚化は、分析結果を他者と共有する際に非常に有効です。グラフを用いることで、複雑な情報も整理され一目でわかるようになりますが、データの特性に応じた適切なグラフ形式を選ぶことが大切です。 仮説設定をどう見る? さらに、分析においては、目的や仮説を明確にしてから着手する姿勢が重要です。分析する際は、比較対象となる条件を十分に整え、個々のデータに対してどの指標(個数、平均値、標準偏差など)を用いるかを慎重に検討することが必要です。自分が伝えたいメッセージと、相手がどの程度の情報を理解できるかを意識しながら、適切なグラフや表現方法を選ぶことも忘れてはなりません。

データ・アナリティクス入門

仕事が変わる学びのヒント

a/bテストはどう? 複数の打ち手が存在する場合、どの選択肢が有効かを判断する上で、a/bテストを活用する方法が効果的です。現状、すぐに取り入れられる業務は思いつかないものの、WEBサイトを活用した効果測定が必要な際には、積極的にこの手法を取り入れていきたいと考えています。 自己訓練の意義は? また、業務に限らず日常生活においても、what-where-why-howの視点を意識して自己訓練を重ねることで、分析能力の向上が期待できると感じています。 障害分析はどう? さらに、このwhat-where-why-howの手法は、障害分析から品質向上のための打ち手を検討する業務において、非常に有用です。さまざまなデータを収集し、仮説を立てながら具体的な対策を検討し、実践していくというプロセスは、日常業務においても積極的に取り入れていく所存です。 対象選定の方法は? まずは、打ち手が必要な対象の選定から始めたいと考えています。現状、日々さまざまな障害が発生しているため、効率よりもまずは障害が削減できる対象を明確にした上で、詳細な分析に取り組んでいくつもりです。そして、学んだ内容を個人のスキルに留めず、職場全体で共有することで、社内の共通ノウハウとして全体のレベルアップにつなげたいと思います。

データ・アナリティクス入門

仮説で読み解く成功のヒント

仮説の基本は何? 今回の学習で、仮説について深く学びました。仮説とは、ある論点に対して一時的に立てる答えのことで、例えば、ノンアルコール商品の販売増加を見る際、対象となる消費者をビールが好きな運転者や妊婦などに分けて分析する、といった考え方が応用できると感じました。 仮説の役割はどう? また、仮説には問題解決のための仮説と、結論を導くための仮説があることを理解しました。時間軸として、過去、現在、将来の視点で検討していくこともポイントでした。 売れる理由は何? 具体的な例として、①なぜある商品が売れるのか、または売れていないのかについての仮説では、若い世代に人気で刺激的ではない味が影響している可能性や、商品が不安定なために安定した需要を得られていないのではないかといった視点が挙げられました。②なぜある地域や取引先で売れるのか、あるいは売れていないのかを考える際には、その地域に若い人が多いのか、高齢者が多いのかという点が仮説の根拠になり得るという点が印象的でした。 検証データはどう活かす? さらに、仮説を検証するためには比較可能なデータ収集が不可欠であり、アンケートを実施する際の設問項目の考え方や、どのようなアンケート内容が仮説と結論を結びつけるのに適しているかという点にも関心を持ちました。

データ・アナリティクス入門

問題を見極める力が成長を促す

問題の本質は何か? 最初に重要なのは、「What(何が問題か)」をしっかりと見極めることです。具体的なデータを丁寧に集め、それを基に問題を特定することが肝心です。そして、問題を見つけた後は、その問題がなぜ起きているのか(Why)をよく考える必要があります。よくありがちなのは、「何が問題か(Where)」を見つけただけで、「どう解決するか(How)」に飛びついてしまい、WhatとWhyを飛ばしてしまうことです。これでは、解決策が不十分になることが多くなります。 直感に頼りすぎていない? このような経験から、私はしばしばWhatとWhyを深く考えず、直感に頼って行動しがちだと反省しています。たとえ直感的に問題や解決策が思い浮かぶとしても、しっかりと事実と原因を見極めた上で、効果的なHowを導き出すことを意識します。 データ収集と原因分析のステップ まずは、対象としている状況に関連するデータをしっかりと集め、実際にどこが理想的な姿と比べて差が大きいのかを検討します。次に、その問題の原因が何であるかや、その問題がどのような影響を及ぼすのかを考えます。原因を明確にし、その問題をどのように解決するかを考えることが重要です。このプロセスを日々の中で繰り返すことで、自分自身の考え方を確立していきます。

データ・アナリティクス入門

数字を超える、比較の妙技

比較と目的はどう考える? 分析において、「比較」と「目的への立ち返り」の大切さを改めて感じました。何かしらの数値をグラフ化して報告するだけでは、かえって分析した気分になってしまい、実際は単なる数字の結果報告に過ぎなかったと認識しています。今後は、目の前の数字だけではなく、適切な比較対象を設定し、分析結果としてしっかり報告できるよう努めたいと考えています。 上司の反応はなぜ? 直近の業務では、状況報告を上司に行った際、好意的な反応を得られず、簡単に取得できる情報だけに依存し、見栄えの良いグラフや表を作成するだけの報告になっていたことを痛感しました。単に数値を並べるだけでなく、それぞれの情報をきちんと比較し、その内容から次の対応や施策を検討できるような報告に改善する必要性を感じています。 次の一手はどうする? そのため、今後の取り組みとして以下の点を意識していきます。 まず、分析の目的を再度明確にすること。 次に、比較する項目や内容について、上司の意見や生成AIのサポートを活用しながら見直しを行うこと。 さらに、定量的な分析だけでなく、定性的な分析も取り入れられるよう検討を進めること。 そして、最終的には目的に沿った次の対応策が検討できるような報告をまとめることを目標とします。

クリティカルシンキング入門

切り口で掴む自分だけの学び

データはどう分ける? データの傾向を把握するためには、まず分解してみることが大切です。1つの切り口だけでは明確な傾向が見えなくても、別の視点から検討することで新たな発見につながります。諦めずに複数の切り口で試す姿勢が、効果的な分析の鍵です。 来場者減少の理由は? 今週の例では、美術館の来場者減少の理由を探る中で「個人客」と「大人」という要素が浮かび上がりました。しかし、これらをすぐに結びつけ「大人の個人客が減っている」と断定するのではなく、各要素を独立した切り口として扱い、さらに深掘りしてみるアプローチが推奨されます。 本当に大丈夫? また、社内アンケートの分析経験から、上司に「見つけた要素を安易に結びつけないように」と指摘されたことがあります。締切のある報告資料では、急いで結果を出すあまり、自分に都合の良い見方をしてしまいがちですが、結論に飛びつく前に「これで大丈夫か?」と自問する習慣が、正確な分析を進める上で非常に有用です。 自由記述はどう解析? 今回の例は数字データを対象にしていましたが、実際の業務では自由記述の設問を分析することもあります。そういった場合も、データを分解して複数の切り口で考察し、さらに言葉の分析方法を試してみることで、より深い理解につながると感じました。
AIコーチング導線バナー

「検討 × 対象」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right