クリティカルシンキング入門

数字が紡ぐ革新のストーリー

パターンはどう見る? 観測された事象データの相関比較から、背後に潜むパターンや特徴を発見し、未知の事象に対しては予測や仮説を立て、具体的な施策を検討しています。各プロセスでは、項目と事象の関係をブレークダウンして文字化することが重要であると考えています。 施策の領域は? また、ブレークダウンする際の項目数が多いほど、検討すべき施策の領域が広がるため、PDCAサイクルの回転回数を増やすことが可能となり、成功に近づけると感じています。 協業の効果は? この手法は、協業候補先企業の事業分析や、外部要因・内部要因の分析、事業戦略、シナジー効果などのスライド資料作成時にも有効です。具体的には、データを分解して対象企業の各販売業界ごとの比率を明確にし、各業界の今後の市場成長率との相関を基にした売上推移シミュレーションのデータ化やグラフ化が求められます。 結論はどうする? さらに、パワーポイント作成時は「結論-論拠×3」という構成を意識し、スライドメッセージと添付グラフの配置にも工夫を凝らすことで、論拠の濃度と伝わりやすさを向上させています。

データ・アナリティクス入門

比較が導く分かりやすい分析

比較の意義は何? 分析の基本は「比較」にあると改めて感じました。比較を行う際は、条件や前提を揃えることが重要です。何のために分析を行い、どのようなデータをどのように加工するのか明確に考えることで、ただ単にグラフを作成するだけでは不十分な分析から、有意義な知見を引き出せると理解しました。 誰のデータを扱う? また「誰の」「何のための」「どんなデータ」を扱うのかということをしっかりイメージすることが、ケースごとに最適な見せ方を検討する上で不可欠です。目的に合わせた具体的な仮説を立て、関係者全員で共通認識を持つことが、説得力ある分析につながると感じました。 目的と仮説はどう? さらに、作業に入る前に分析の「目的」と想定される「仮説」を明確にすることが重要です。以前はただタイトルをつけるだけで済ませていましたが、グラフから確認したい事柄を明記することで、チーム内での認識が統一され、より精度の高い分析ができるようになりました。目的に合わせ、比較対象の前提条件を整理してから作業を開始する手法は、今後の分析においても大変有効だと再認識しました。

クリティカルシンキング入門

学びを深める!未来のための思考法

知識だけでは足りない? ライブ授業の録画を見て、改めて学びが深まったと感じました。特に最後に先生が言った、「知識を得るだけでは駄目で、自分の頭で考えなければ身につかない。とはいえ、学びを止めてしまうと独断に陥る」という言葉が印象的でした。忙しさを理由に学ぶ機会を持たなければ、自分の経験だけでしか考えられなくなるのではないかと、少し不安を感じました。 本当の学びは何? 改めて学ぶことの重要性を考える機会となりました。 問いは何で始める? 課題の改善策を考える際には、まず問いを立て、問いを忘れないように広い視野を持って検討することが大切だと考えます。対象によって検討内容は変わるかもしれませんが、問いや軸を忘れずに思考することが重要です。 チーム方針はどう? 来年度のチームの基本方針を検討しています。再来年度の変革に向けて、何を変え、何を変えないかを精査する必要があります。よりモチベーション高く取り組めるよう、目標設定や教育機会(研修など)についても今までのやり方を踏襲するだけでなく、広い視野で多角的に検討していきたいと考えています。

データ・アナリティクス入門

多視点比較で広がる学びの世界

比較の意義は? 分析の要点は、比較にあるという点が非常に印象深かったです。動画と同様に、特定の企業を導入するという目的が先行しがちで、その情報をもとに比較対象を探すことが多かったため、ディスカッションを通してさまざまな視点が存在することを学びました。今後の学習では、固定概念にとらわれず、他の選択肢についてもしっかりと検討することが必要だと感じています。 異なる視点は? また、前述の通り、導入の目的が一方に偏る傾向があったため、別の視点も重要であると再認識しました。自分自身の考えだけに依存するのではなく、異なる問題意識や視点も考慮しながら、比較を進める際に他の検討要素がないか常に意識するよう努めたいと思います。 検証はどうする? さらに、提案時にはイシューを軸にして比較の正しさを検証し、どのグラフが正確な情報を伝えられるかを熟考することが不可欠だと感じています。ブレインストーミングで生成AIを活用し、他の視点が得られないか確認すること、そして上司にこまめに相談して要点に漏れがないかチェックする姿勢も大切だと実感しています。

データ・アナリティクス入門

営業部門と協働し、データ分析の切り口を探る学び

定量分析で何が重要? 定量分析の重要性と、分析では比較や仮説、目的が重要であることを学びました。実務においては仮説を立てる能力や、分析において適切な切り口を見つけることが求められます。このためには、分析対象に対して強い興味を持つことが大切だと感じました。 問合せ増加の施策検討 現在、私は担当しているWEBサイトからの問い合わせ数を増やすための施策検討を行っています。問合せの生データやサイトのアクセスログなど、使用可能なデータは整っています。また、SFAデータを分析し、2025年度の営業施策を検討中です。こちらについてもSFAデータにアクセスできる状況にあり、今後加工は必要ですが、元データは揃っています。 SFAデータ分析の進め方 まずは、SFAデータの分析から着手する予定です。SFAデータには多くの分析切り口が存在しますので、目的や仮説を明確にするために、いきなり手を動かすのではなく、営業部門の担当者を巻き込むことにします。具体的にはどういった分析が求められるのか、現場で役立つかどうかを相談することが大切だと考えています。

デザイン思考入門

失敗も糧に未来への挑戦

プロトタイプの意義は? 自身のプロトタイプ作成を通じて、また他者のプロトタイプを検討する際にも、可能性を排除しない姿勢がいかに重要かを実感しました。同様に、フィードバックの際も前向きなアドバイスを意識することで、その後の可能性が広がると感じています。 新手法は効果的? 新たなトレーニングプログラムの導入、新たな選手の育成方法、さらには試合運営の新しい手法を試みる場合にも、この姿勢は有効です。いきなり完成形を目指すのではなく、スモールスタートから出発し、繰り返し改良を重ねる流れが効果的だと考えます。ただし、生身の選手を対象とする以上、失敗や上手くいかない事態にも備える必要があり、あらかじめ関係者との合意形成をしっかりとおこなうことが重要です。 失敗も学びになる? どの業務においても、「とにかく試してみる」という姿勢と、不明点があれば実践を通して学ぶ姿勢が大切だと感じました。共感や課題の認識、アイディア出しといった基本的なプロセスを経た上でプロトタイプを進めれば、前向きな姿勢で改良を重ねることが成功につながると実感しています。

データ・アナリティクス入門

誰に聞くかで変わるデータの真実

誰に聞くべき? データ収集の過程では、まず「誰に」聞くかという点が重要だと感じました。意味のある対象から情報を得ることで、収集したデータの信頼性が高まります。 聞き取りはどうする? また、情報の聞き取り方も大切です。アンケートや口頭での聞き取りなど、目的に合った方法を用いることで、精度の高いデータにつながると実感しました。特に、比較するためのデータ収集を怠らないことが求められます。 反論排除は必要? さらに、「反論を排除する情報にまで踏み込む」という視点を、より一層意識すべきだと学びました。これにより、意見の偏りを防ぎ、客観的な分析が可能になると感じています。 仮説の確認は? アクセス解析の業務で日頃から仮説を活用しているとはいえ、今回の学びは仮説を立てる際のポイントを再確認する良い機会となりました。複数の仮説を検討し、決め打ちせずに異なる切り口から網羅性を持たせることが、より説得力のある分析につながると理解しています。 実践は続くの? 今後もこの考え方をしっかりと実践していきたいと思います。

クリティカルシンキング入門

グラフで魅せる!学びの秘訣

グラフ表現はどう? グラフの見せ方について、時系列のデータを表現する際は、縦棒グラフを用いて横軸に時系列の要素を記載するのが効果的です。一方、各要素ごとの主張を明確にする場合は、横棒グラフで表現する方法が適しています。 アイコンはどう活かす? 文字の表現に関しては、アイコンはあくまで補助的な役割を果たし、伝えたいメッセージとの整合性が重要です。 スライドで何を工夫? また、スライド作成では、伝えたい順序に沿ってグラフを配置し、強調したい情報には適切な形容詞を用いることで、聞き手にイメージを持たせる工夫が求められます。 戦略で何を狙う? 前週で触れた内容と共通する部分もありますが、このスキルはIT戦略を検討する際に、どの領域への投資対象とすべきかを提案する際に大いに役立つと考えています。たとえば、データをスライドに落とし込む場合、グラフを適切な形式と順序で配置し、アイコンや色を効果的に用いることで、相手にスムーズに内容を理解してもらえます。今回学んだことを意識し、今後の業務に活かしていきたいと思います。

戦略思考入門

学びを体感!戦略が日常に息づく

講座と出来事は何を示す? この6週間を振り返ると、講座そのものだけでなく、周辺で起きたさまざまな出来事が大きな示唆を与えてくれたことが印象的です。人事制度の案件ではOODAループを実践する機会があり、『デス・ストランディング2』では戦略的思考を疑似体験しました。同時期に学んだ社会学は、自分の思考体系を整理するきっかけとなり、これらの事象が講座と呼応し合うかのように、自己変容を促進してくれたと感じています。 学びの相乗効果は何? また、一定期間テーマを決めて取り組むことで、他の事象の見方も変わり、学びが相乗効果的に深まることを実感しました。短期間に集中して学ぶnano講座は、知的刺激の触媒として非常に魅力的な形式であると感じています。 次はどの分野に挑む? 講座で鍛えた戦略的な思考は、次に取り組むテーマ選びにも活かされると考えています。講座が一区切りした今、自分の業務状況やキャリアの方向性を踏まえながら、次の学習対象として「アカウンティング」と「交渉術」のどちらに取り組むか、戦略的に検討していきたいと思います。

データ・アナリティクス入門

「成功と失敗の両面から学ぶ分析術」

分析の本質とは? 分析の本質は比較であるということを学びました。適切な比較対象を選ぶことが重要で、同じ基準で比較することが求められます。分析の目的を明確にし、何を明らかにしたいのかを考えた上で、それと比較するものを決めるようにしています。 生存者バイアスとは? また、生存者バイアスに引っ張られないように注意し、成功談だけでなく失敗談や隠れた事実にも目を向けるように努めています。新規プロジェクトやビジネスの検討の際には、比較対象を利用した分析を重視して提出しています。 口頭説明からの変化は? これまでは上司や他部門に説明する際に、数字や分析を用いずに口頭で説明することが多かったのですが、今後は分析結果をもとに対峙するように心がけます。休み明けに提出する会議資料や、副社長とのミーティング用資料でも早速この方針を実践するつもりです。 比較対象の導入はどうする? 事実の数字を列挙するだけでなく、その数字を示す必要がある理由や目的をまず考え、適切な比較対象を導入して分析し、説明できるよう取り組んでいきます。

データ・アナリティクス入門

仮説で開く成長の扉

仮説の軸どうする? 仮説を考える際は、一定の軸を持って行うと思考が整理され効率的です。例えば、4P(価格・場所・商品・プロモーション)や3C(顧客・競合・自社)などのフレームワークを活用することで、仮説が一点に偏らず、全体を俯瞰して検討できます。 効果検証のポイントは? また、デジタルマーケティングの効果検証においては、訴求メッセージが狙った対象に適切に伝わっているか、費用対効果が十分か、媒体ごとの違いがあるかなどを意識して仮説を立てることが重要です。ターゲット設定が正確かどうか、その情報が購買に結びついているかという点も、明確な仮説設計を通じて再確認する必要があります。 購買行動の見極めは? さらに、購買データに基づき、どのイベントが発生したときに購買に結びつくのかを意識しながらデータを整理することで、仮説シナリオを構築します。その上で、ターゲットを明確に定め、手元にある各種レポートや分析ツールをもとに、メッセージが本来届くべき相手にしっかり伝わっているかを検証する方法が求められます。

デザイン思考入門

多様な視点で広がる成長の鍵

異なる視点で見る? フィードバックを受ける際、ユーザー目線とデザイナー視点など、立場を変えて意見をもらうことで、新たな視点や気づきを得られると感じました。また、ストーリーボードを用いることで、テスト対象の体験を具体的にイメージしやすくなり、意見交換がよりスムーズに進む印象です。さまざまな人の考えを聞くことは、次の検討事項に対するアイデアや検討方針を見出すうえでも大いに役立ちます。 同一人物の工夫は? 特に、同一人物からでも視点を変えてフィードバックをもらうという試みは有効だと感じました。例えば、改善提案に対して提案される側だけでなく、上司や同じ部署の人といった異なる立場から意見を求めることで、予想外の気づきが生まれる可能性があります。 次への行動は何? そのためには、あらかじめフィードバックしてもらう視点を検討し提示すること、実際にフィードバックを受ける際にはどの視点で意見が出されるのかを確認すること、そしてフィードバックの内容をまとめ整理し、次のアクションに繋げていくことが重要だと考えます。
AIコーチング導線バナー

「検討 × 対象」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right