クリティカルシンキング入門

分解で見える未来の戦略

なぜ事象を分解する? MECEの考え方を取り入れ、事象を分解することの重要性を再認識しました。分解には、層別分解、変数分解、プロセス分解といったさまざまな手法が存在し、それぞれの方法で要素を整理することができることが分かりました。これまで体系的に分解要素をカテゴライズしていなかったため、大変驚きと新鮮さを感じました。 営業戦略はどう変わる? また、営業やチームの目標策定の立場に立つ中で、どの顧客にどのようなアプローチをすべきかを考える際にも、MECEを活用した分析の有用性を実感しています。特に、売上、利益率、商材、受注頻度といった観点から要素を分解することで、アプローチが不足している部分を具体的に把握し、より効果的な戦略を立てることができると考えています。

クリティカルシンキング入門

変数×層別で挑む業務の新解釈

分解の軸は正確? 業務上、さまざまな課題に取り組む際、プロセス分解を用いることが多いと感じています。実際、課題を分解するときに「いつ」「誰が」「どのように」という軸を意識して切り分けていますが、多角的な視点から分解することにはまだ慣れていないと実感しています。 切り口の工夫はどう? そのため、今後は層別分解や変数分解といった切り口も取り入れ、事象ごとに工夫して分析できるよう努めたいと考えています。これらの手法を使うことで、業務上のプロセスに対する課題解決に一層取り組んでいく所存です。 結果の正確性はどう? また、資料作成や他者への説明の際にも、層別分解や変数分解を活用し、分解した結果や解析内容が正確かどうか再確認することを心掛けたいと思います。

クリティカルシンキング入門

イシューで変わる学びのカタチ

イシューの本質は? 「イシュー」に関して、物事の状況によって何に注目すべきか、何を実現するべきかを明確化した上で、どのような取り組みを実施すればよいかを考える必要があると学びました。また、実践演習では、データに基づいて解決策を見出し、課題解決の手法を学べた点が大変勉強になりました。 地域データの真意は? また、地域ごとに家賃相場、土地の値段、利回りが異なることを実感しました。「イシュー」の考え方を軸に、担当エリアのデータ分析を行う際には、人口推移や主要な企業、学校などの情報、さらに家賃相場や土地値、利回りなどの各種データを収集しました。これにより、地域ごとの利回り感や土地相場が明確になり、エリアに合わせた効果的な営業手法の検討に活用できると感じました。

クリティカルシンキング入門

手を動かして見つける新発見

視点の違いって何? データの断面によって得られる情報はそれぞれ異なるため、まずは様々な視点からデータを捉えることが大切です。データを並べ、一度エクセルなどで手を動かしながら、細かい作業を加えることで新たな発見につながります。 仮説の鍵は何? また、切り口を出すためには仮説を立て、自ら考える姿勢が必要です。イシューに対しては、どんな考え方があるかを因数分解するように整理し、多角的に検討する手法が効果的です。 答えの見極め方は? さらに、データ分析では、求める答えを明確にしたうえで仮説を構築し、切り口を設定することが求められます。自分の考えだけでなく、周囲の意見も取り入れることで、より多角的な視点から論点を整理し、深い理解につながるでしょう。

クリティカルシンキング入門

分解で見つける新たな気づき

なぜ分解するの? データを分析する際は、まず分解することで様々な視点から検証できる点が魅力的です。たとえ分け方に迷った場合でも、実際に手を動かして解析することで、分解前には気づかなかった新たな発見が得られます。 全体をどう捉える? 分解作業では、まず全体の定義を明確にし、漏れも重複もない状態で情報を整理することが不可欠です。具体的な手法として、層別分解、変数分解、そしてプロセスごとの分解が挙げられます。 比較で何が分かる? 月次データの分析においては、前月のデータとの比較が主流となっていますが、定例業務において手法が固定化しがちです。今後は、これまでと異なる視点からの分解方法を模索しながら、より柔軟な分析を心がけたいと考えています。

クリティカルシンキング入門

なぜなぜで本質を捉える学び

論点の見極めはどう進める? 論点を正確に見定め、その論点(Issue)を分解して分析し、打ち手を検討するプロセスを実践できたことは非常に有意義でした。最初に設定するIssueやその分解の仕方によって、得られる示唆の質が大いに変わることを実感しました。 Issue設定の意義は何か? 業務には多くの問題や課題が存在しますが、その中でも本質的で多数の課題の根源となるものを見極め、Issueとして設定する練習が必要だと感じています。設定したIssueから分解されたsub issueの中で、現実的に解決可能なものに優先順位を付け、体系的にアプローチする試みを進めたいと思います。また、正しいIssueの設定には「なぜなぜ分析」が有効な手法であると考えています。

データ・アナリティクス入門

データで魅せる学びの未来

平均と偏差をどう見る? データ解析では、代表値として平均値や分布の指標である標準偏差を用い、データの傾向や特性を把握します。また、平均値以外の代表値も存在するため、目的に合わせた適切な指標の選択が求められます。 グラフ選びはどうなってる? さらに、データを可視化する際は、対象となるデータに合わせた最適なグラフを選ぶことで、情報がより分かりやすく整理されます。この基本的な解析手法は、事業性評価にも応用され、普段の業務に自然と役立てることができています。 動画グラフは新しい? また、関連動画で紹介されていたグラフの中には、以前は使用したことがなかったものもありました。そのため、必要な際にすぐにグラフが作成できるよう、日頃から練習を重ねています。

マーケティング入門

見える化が拓く戦略実践記

抜けはどこにある? 日々無意識に利用しているセグメンテーション、ターゲティング、ポジショニングですが、体系的に学んでみると、抜けている部分があると実感しました。社内の販売戦略の議論の際には、この講習で学んだビジュアル化の手法を実践し、戦略の実証に役立てたいと考えています。 新施策の展開は? また、新規製品の販売施策に関する協議では、セグメンテーション、ターゲティング、ポジショニングをビジュアルに落とし込む取り組みを進めます。特にポジショニングでは、競合他社との差異を明確化するために、差別化が顧客のニーズにどの程度の付加価値をもたらすかを精査します。そして、プロモーション活動における効果測定を見える化し、戦略の成果を確認することを目指します。

データ・アナリティクス入門

戦闘機と株価が示す成長のヒント

なぜ戦闘機の事例が印象的? 戦闘機の事例が特に印象に残りました。生存するために必要な要素と不要な要素という視点で分析する方法について、従来「帰還した機体」と「帰還しなかった機体」だけで捉えていた自分にとって、大変新鮮な学びでした。 仮説検証の手法は? また、演習では2つのアプローチが示されました。ひとつは、自己が立てた仮説に対してエビデンスを提示する仮説検証の手法です。この方法は、仮説の正確性を確認するために非常に有効だと感じました。 企業成長性の判断は? もうひとつは、企業の成長性を判断するための方法です。演習で株価推移の比較を通じて、複数の論点を設けることで、個人のバイアスに左右されずにロジカルな判断が可能になる点が印象的でした。

クリティカルシンキング入門

多角的視点で拓く課題解決

なぜ視点を広げるの? どうしても最初に目に付いた課題に意識が偏ってしまうことが自分自身の課題だと痛感しました。複数の視点から問いを掘り下げ、その中で最適な解決策を選ぶプロセスを何度も繰り返すことで、自然にその手法が身につくレベルへと高める必要があると感じています。 どうして全体をとらえる? また、私の業務では人事制度の課題を分析し、効果的な対応策を企画・実行することが求められています。これまで、分析しているつもりであっても、全体を網羅する視点が不足しており、目につきやすい課題に飛びついて対処してしまう傾向がありました。今後は、課題を細かく分解し、複数の観点から最適解を選ぶプロセスを、自然に実践できるレベルに自分を鍛えていきたいと考えています。

データ・アナリティクス入門

課題解決の新たな羅針盤

プロセス分解で発見は? 課題解決のプロセス(what, where, why, how)について学ぶ中で、総合演習などであまり意識していなかったプロセス分解の手法に新たな気づきを得ました。A/Bテストに関しては、IT業界での知識はあったものの、今後は条件を整えてしっかり活用したいと考えています。 複数仮説の真価は? また、日常的に様々な判断を迫られる中ですぐに課題への対応策を考えてしまう傾向があるため、今回の研修を通じて問題や課題に対して、明確なプロセスを意識して複数の切り口からデータを分析する重要性を再認識しました。今後は、複数の仮説を検証して得られた知見を実際の管理業務に活かすことで、より効果的に課題解決へと繋げていきたいと考えています。

データ・アナリティクス入門

あなたも変われる学びの瞬間

データをどう活かす? 分析を行う際は、常に目的を意識しながらデータと向き合うことが基本です。データは単なる数字ではなく、素材と捉え、適切な調理方法や飾り付けで仕上げるように結果の表現手法を工夫する必要があります。各データの特性に合わせた分析プロセスを経ることで、他社にもわかりやすく咀嚼・理解される結果を得ることができます。 サポート状況はどう? また、作成されたサポートケース数の増減やカスタマーサーベイの結果を、製品、顧客、担当エンジニアなど複数の要素を組み合わせながら分析します。こうした取り組みによって、サポートチームが健全にオペレーションできているかを確認し、もし課題が見つかった場合には、その解決に向けた具体的なプランの策定も行います。
AIコーチング導線バナー

「手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right