データ・アナリティクス入門

仮説から広がる学びの扉

仮説の重要性を感じる? 仮説とは、ある論点に対する、または不明な事柄に対する仮の答えのことです。仮説を立てた上で、その検証のためにどのようなデータ収集が必要かを考えることが重要です。 データ収集はどう考える? 具体的には、仮説を立てる際には比較する指標を意図的に選び、平均や標準偏差の算出など、一手間を惜しまない努力が求められます。また、必要なデータが不足している場合は、誰にどのように情報を求めるか、どんな手法で収集するかを検討し、反論が出る可能性も想定して複数のデータ収集手段を準備することが大切です。 複数仮説で探る方法は? さらに、問題箇所の特定には、一つの仮説に固執せず、複数の仮説を立てることが必要です。これにより、各仮説同士で網羅性を持たせ、より広い視野で問題にアプローチできます。頭の中だけで考えるのではなく、視覚的に仮説を書き出すことで、検証作業の効率をさらに高められると感じています。 経験と共有の大切さは? 実務経験が積まれるほど予想は立てやすくなり、その予測に基づいたデータ分析に陥りがちですが、今後はまず複数の仮説を明確に書き出し、漏れなく網羅することを意識したいと思います。また、上司やメンバーとも仮説を共有することの重要性を認識し、共通の意見を持って話し合うことで、コミュニケーションをより円滑に進めたいと考えています。

データ・アナリティクス入門

プロセスが紡ぐ学びの軌跡

原因探索はどう? 問題の原因を探る際、プロセスに分けて考えることの重要性を実感しました。Week1で学んだ「分析は要素を分けて比較する」という手法を再確認し、今後も意識して取り組んでいきたいと思います。また、対概念について学ぶ中で「問題に関係する要素」と「それ以外」を区別するシンプルな考え方が非常に使いやすいと感じました。これまでに習ったフレームワークとも併せ、具体的な分析に活かしていきたいです。 判断基準はどう? さらに、「正解」が存在しない中で最適な案を選ぶには、適切な判断基準に基づいて評価するプロセスが不可欠であることが印象に残りました。精度を高める努力は必要ですが、時間をかけすぎないバランス感覚を持ちながら課題に取り組むことが大切だと考えています。 営業戦略考える? また、売上や利益を拡大していくために、What、Where、Why、Howを丁寧に検討し、効果的な営業施策を立案・実行する必要性を感じました。関係者に説得力のある行動計画を提示することで、より良い成果を得られるよう努めていきます。 多角的視点は? 一つのアイデアに固執せず、多角的な視点で物事を見ることも心がけたいです。正解のない状況でも、適切な判断基準を設定して効率的に進めることで、無駄な時間を省きながら最適な解決策にたどり着けると実感しました。

クリティカルシンキング入門

数字の捉え方を変える新発見への旅

数字の切り口をどう捉える? 数字の切り口には複数のパターンがあり、その見え方は切り方次第で変わるということがよく理解できました。しかし、切り口によっては解釈を誤る可能性もあるため、それをどのように防ぐかが重要なポイントだと感じました。 フレームワーク活用のヒントは? 分解の方法として3つのフレームワークが存在し、特にプロセスで切り分ける方法は今後意識して取り入れたいと思います。これらが効果を発揮するためには、ある程度の基礎知識やMECEといった考え方が必要であり、体系的に知識やスキルを習得する必要性を感じました。 管理会計で何を見極める? 現在の職務において、既存事業の理解には、売上構成などを管理会計的に分析することが重要だと考えています。ここでGailという手法が活用できると思いました。最初に事業を分解して特性を理解し、その特性から課題を洗い出していきたいと考えています。そして、今後の社会情勢と照らし合わせて事業の方向性を整理したいです。 整理と議論はどう進める? まずは既存事業部の情報収集を始め、その一方で管理会計の知識を身につけ、管理会計としてのプロセスを整理し、フォーマットを作成してみたいと思います。これにより自身の事業理解を深め、経験者とディスカッションを行い、現状の事業課題や今後の事業戦略に反映したいと考えています。

クリティカルシンキング入門

適切な問いが導くデータ活用術

適切な問いはなぜ? 今週の学びを通じて、問題解決における「適切な問いの設定」の重要性を改めて認識しました。明確に定義された「解決すべき課題」が、効果的な分析と解決策の導出につながることを学びました。また、データの適切な加工と分析によって情報を構造化し、視覚的に明確な形で提示する手法の有用性を実感しました。さらに、データの図表化が分析の精度向上に寄与することを体感し、実務での具体的な活用方法を見出すことができました。 現職での実践は? 「問いを立てる力」と「データの分析手法」を現職の業務改善プロジェクトで実践していきます。業務フローの課題特定に際しては、チームメンバーと「本質的な課題」を共有し、分析を深めるプロセスを確立しようと考えています。また、提案資料作成においてはデータの視覚化を通じて説得力を高め、経営層の的確な意思決定をサポートしたいと思います。 解決力高める秘訣は? 課題解決力を高めるため、以下の取り組みを実践します。毎週の振り返りで課題を整理し、本質的な問いを設定し、分析結果を図表化してチームで共有し、活発な意見交換を行います。わかりやすく論理的な資料作成を心がけ、改善を重ねます。また、学んだ内容を繰り返し実践し、定期的な振り返りで成長を目指します。これらの取り組みを通じて、実務での課題解決力を高めていきたいと考えています。

データ・アナリティクス入門

ファネル分析で顧客行動を最適化する方法

ファネル分析の重要性とは? マーケティング分野での業務経験があるため、比較的知っていることが多かったですが、ファネル分析において顧客の行動プロセスを適切に設定する必要性を改めて認識しました。また、プロセス×ウォーターフォールチャートはあまり使っていなかったので、今後活用してみたいと思います。 ABテストの基本と注意点は? 以下、授業メモです。 ◆ABテスト - ABテストは1要素ずつ行います。複数の要素をテストしたい場合は、別の手法を検討する必要があります。 ◆ファネル分析 - ユーザーの利用段階ごとに、どの段階でユーザーが離脱しているのかを可視化します。 - プロセス×ウオーターフォールチャートを適切に活用します。 - 顧客の行動プロセスを適切に設定することが重要です。 GA4での課題解決にどう取り組む? GA4でのファネル分析を新たに作成する際には、顧客の行動プロセスを意識します。また、プロセス×ウオーターフォールチャートを適切に活用し、ABテストもページスピードが低下するリスクを考慮しつつ活用を検討します。 ちょうど製品サイトのリニューアルを進めており、GA4の設定も見直す予定です。顧客の行動プロセスを意識したファネル分析を行い、原因探索が適切に行えるようにします。また、見出した原因に基づく改善にはABテストを活用します。

クリティカルシンキング入門

グラフで導く未来へのヒント

グラフで特徴は見える? 数字データの特徴を把握するためには、グラフ化して可視化することが効果的です。グラフにする際は、さまざまな切り口や区間を工夫し、どのような特徴に注目すべきかを見極める方法を検討します。時間がある場合は、手を動かして実際にいろいろ試してみることが大切です。 MECEの活用法は? また、データを漏れなく重複なく層別するためには、MECEの考え方が必要不可欠です。層別の方法としては、大きく分けて三種類の考え方があります。ひとつは総数を単に足し算で分割する方法、ひとつは単価と人数などを掛け合わせる方法、そしてひとつはプロセスに基づいて分割する方法です。 リスク特定はどうする? たとえば、熱中症を減らすための社内教育に取り組む場合、年齢、性別、部署などで層別を行い、熱中症のリスクが高いグループを特定することができます。また、熱中症がどのようなタイミングや場所、状況で発生しているかを分析することで、どのような対応策が必要かが明確になります。 対策整理は進んでる? このような考え方をもとに、5月中に昨年のデータを活用して分析を進め、夏に向けた対策の重点箇所や具体的な内容を整理していきたいと考えています。悩む時間をなるべく減らし、MECEを意識しながらさまざまな角度から分解し、新たな傾向を見出す手法を実践していきます。

データ・アナリティクス入門

過去との比較が教える成功のカギ

分析目的は何? 分析の目的やゴールを明確に決めることは、分析の方向性や手法、評価基準を正しく設定するために非常に重要です。明確な目的がなければ、分析結果がどのように活用されるか不透明となり、効果的な判断が難しくなってしまいます。 比較はどう考える? また、分析の本質は比較にあります。過去と現在のデータや異なる状況を比較することで、パターンや傾向が明確になり、最適な選択や戦略を導き出すことができます。 SNS比較で何が見える? 私自身の仕事においては、過去のSNSキャンペーンを期間ごとに区切り、比較することで、これまで見えていなかった結果が浮かび上がると感じました。ただやりっぱなしにするのではなく、過去との比較から数字の意味や背景が見えてくるため、結果の解釈がより具体的になると思います。たとえば、フォロワー数やエンゲージメント数の推移だけを見るのではなく、過去のキャンペーンと比較することで「なぜ今この結果が出ているのか」という背景に迫ることができます。 データ活用はどう? さらに、実際にデータを活用してマーケティングキャンペーンを企画することも有効です。小規模なプロジェクトを自ら立ち上げ、仮想のデータセットを使用してキャンペーンを分析することで、製品ごとの購買データに基づいた最適な広告戦略を立てる試みが可能になると感じました。

データ・アナリティクス入門

複数仮説で切り開く学びの道

仮説はどう組み立てる? 仮説を考える際、3Cや4Pなどのフレームワークを活用することで、複数の仮説を網羅的に立てる手法に改めて気づかされました。これまでマーケティングのツールとしてしか意識していなかった考え方も、整理のための有効な手段となることを実感しました。 日常業務で仮説考察は? また、日々の業務の中で仮説を考え続けることにより、自分自身の業務への向き合い方を変えていきたいと考えています。 新サービスの評価はどう? 新サービスの提供時には、仮説を一つだけ立てた結果、分析や報告の内容が浅くなってしまい、納得感に欠ける部分があったと感じました。頭の中にはもっと考慮すべき点があったにもかかわらず、十分に明文化できなかったため、結果として不十分なものになってしまいました。 再挑戦の決意は? この現状を踏まえて、改めて複数の仮説を考え直し、分析と報告を再度やり直す方向で進めていこうと考えています。 案件分析の進め方は? 現在、2件の案件で分析が必要とされています。1件目は、半年前に提供したサービスの展開状況と今後の展開について、2件目は1年前に想定したサービス利用状況を再度確認する業務です。各案件とも、現状のデータを収集し、フレームワークを用いて仮説を立て、過去の想定と現状との違いを明確にする形で分析を実施する予定です。

クリティカルシンキング入門

問題解決に導く情報分解の極意

イシューって何? イシューとは何か、またそれを設定して考えることの重要性について、改めて学ぶ機会となりました。まず、問題を解決するための方向性を決めるために、情報を分解していく手法や、グラフを用いた視覚化、さらに表を加工するなど、これまで学んできたことを実践的に振り返ることができたように思います。しかし、情報を細分化することに関しては、まだ苦手だと感じました。これを克服するために、実際の業務を通じて追体験を重ねていきたいと考えています。 課題の捉え方は? 日々の提案資料を作成する際には、その提案が本当に重要な課題を特定できているかどうかを自問自答しながら、資料作成に取り組むことを心がけています。会議に参加すると、イシューがずれていると感じることや、時には自分がずらしてしまったかもと思うことがあります。そのため、適切な課題を捉えるという大前提を忘れないようにしたいと考えています。 PPTの下準備は? また、PPTを作成する際には、最初からPPTに向き合うのではなく、Miroなどのツールを活用してラフスケッチから始めることを心がけたいです。その際には、問題を分解し、グラフを用いて視覚化し、一手間かけて表を加工することを意識します。そして、イシューを特定した状態で会議に参加できるよう、事前準備をしっかりと行うことを目標にしています。

データ・アナリティクス入門

数値と論理で見える理想の未来

どの方法で解決? 問題解決には大きく2つのアプローチがあると感じています。1つは、あるべき姿と現状のギャップを埋め、正しい状況に戻すための方法です。もう1つは、未来に向けたありたい姿と現状のギャップを解消し、望む状態に到達するための方法です。どちらの場合も、目指す状態と現状を定量的に示すことが非常に重要です。 分析手法は何? そのため、ロジックツリーやMECEといった分析手法が有効だと考えています。これらのツールを使うことで、問題やデータを細かく分解し、整理された形で把握することが可能になります。 顧客データ整理はどう進む? 具体的には、現在保有している顧客データに含まれる情報を、国や契約の条件などの観点から整理する必要があります。これまで「顧客データ」とひとまとめにされていた部分を、ロジックツリーを用いて項目ごとに分解し、各顧客についてどのような情報が含まれているのかを明確にすることが求められます。また、業務における理想の状態と現状のギャップについても、数値などの定量的な指標を用いて示すことが大切だと感じました。 手法活用の可能性は? このように、定量的な情報の整理と、体系的な分析手法の活用が、問題解決を実現する上で不可欠であると再認識しました。今後も、これらの手法を業務の改善に積極的に取り入れていきたいと思います。

クリティカルシンキング入門

伝わる!数字×図表のプレゼン術

ビジネスで何が伝わる? あらゆるビジネスシーンで、相手に情報を伝え、行動を促すためのノウハウを学びました。図による伝達と、文章での表現それぞれのポイントを体系的に理解できたことが大きな収穫です。 どう伝えれば効果的? 図を用いて情報を伝える際は、以前学んだ「数字に意味を持たせる」という考え方を意識します。図や表を作成する際には、何を目的に、どの情報を伝えたいのか、そしてその結果として相手にどう変化してほしいのかを想像することが重要だと感じました。また、スライド作成時には、体裁を丁寧に整える基本的なことの重要性を改めて確認しました。 職場で活かせる? 現職では、営業やマーケティングの数字を分析し報告する機会が多いため、今回学んだノウハウはあらゆるプレゼンテーションで活かせると確信しています。さらに、ビジネスライティングは、たとえ職を離れても生涯にわたって必要な能力であるため、日々実践を重ねていきたいと思います。 コミュニケーションの工夫は? 毎週の経営報告においては、作成したスライドで何を伝えたいのか、相手がどのような状態になってほしいのか、そして何を求めているのかを常に意識するように努めます。部下とのコミュニケーションにおいても、目的や手法、丁寧さを重視し、より伝わるコミュニケーションを実現していきたいと考えています。

データ・アナリティクス入門

数字が語る驚きの実態

なぜ多角的に見る? データ分析は、ただデータを見るだけでなく、さまざまな角度から比較し、分析することが重要だと感じました。数字にまとめたり、数式を用いて関係性を明らかにしたりすることで、隠れた事実に気付くことができます。また、代表値や分布、平均値と標準偏差など、基礎的な手法を通じてデータ全体の傾向を掴むことが効果的です。 どの代表値が適切? 社内で扱うデータはボリュームが大きいことが多いため、比較の際には代表値に注目する場面が多かったです。これまでは直感的に平均値や中央値を代表値としていたものの、データ全体の特徴を踏まえてどの代表値を採用すべきか再検討する必要があると学びました。さらに、業務ではデータをマトリックスにまとめたり、グラフや分布図にして視覚的に把握できる形に変換することで、数字が伝える実態をより明確に捉えることができると実感しました。 何を比較検証すべき? 大量のデータを取り扱う際は、さまざまな代表値の算出方法を試すこと、また平均値においても単純平均以外のパターンが存在することを忘れずに検証することが大切だと感じました。データを可視化する際には、「何を見たいのか」「どこを比較するのか」といった目的を明確にした上で、見たい事象が浮かび上がるよう工夫することが、今後の分析業務において重要なポイントだと再認識しました。

「手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right