クリティカルシンキング入門

問題解決に導く情報分解の極意

イシューって何? イシューとは何か、またそれを設定して考えることの重要性について、改めて学ぶ機会となりました。まず、問題を解決するための方向性を決めるために、情報を分解していく手法や、グラフを用いた視覚化、さらに表を加工するなど、これまで学んできたことを実践的に振り返ることができたように思います。しかし、情報を細分化することに関しては、まだ苦手だと感じました。これを克服するために、実際の業務を通じて追体験を重ねていきたいと考えています。 課題の捉え方は? 日々の提案資料を作成する際には、その提案が本当に重要な課題を特定できているかどうかを自問自答しながら、資料作成に取り組むことを心がけています。会議に参加すると、イシューがずれていると感じることや、時には自分がずらしてしまったかもと思うことがあります。そのため、適切な課題を捉えるという大前提を忘れないようにしたいと考えています。 PPTの下準備は? また、PPTを作成する際には、最初からPPTに向き合うのではなく、Miroなどのツールを活用してラフスケッチから始めることを心がけたいです。その際には、問題を分解し、グラフを用いて視覚化し、一手間かけて表を加工することを意識します。そして、イシューを特定した状態で会議に参加できるよう、事前準備をしっかりと行うことを目標にしています。

データ・アナリティクス入門

数値と論理で見える理想の未来

どの方法で解決? 問題解決には大きく2つのアプローチがあると感じています。1つは、あるべき姿と現状のギャップを埋め、正しい状況に戻すための方法です。もう1つは、未来に向けたありたい姿と現状のギャップを解消し、望む状態に到達するための方法です。どちらの場合も、目指す状態と現状を定量的に示すことが非常に重要です。 分析手法は何? そのため、ロジックツリーやMECEといった分析手法が有効だと考えています。これらのツールを使うことで、問題やデータを細かく分解し、整理された形で把握することが可能になります。 顧客データ整理はどう進む? 具体的には、現在保有している顧客データに含まれる情報を、国や契約の条件などの観点から整理する必要があります。これまで「顧客データ」とひとまとめにされていた部分を、ロジックツリーを用いて項目ごとに分解し、各顧客についてどのような情報が含まれているのかを明確にすることが求められます。また、業務における理想の状態と現状のギャップについても、数値などの定量的な指標を用いて示すことが大切だと感じました。 手法活用の可能性は? このように、定量的な情報の整理と、体系的な分析手法の活用が、問題解決を実現する上で不可欠であると再認識しました。今後も、これらの手法を業務の改善に積極的に取り入れていきたいと思います。

クリティカルシンキング入門

伝わる!数字×図表のプレゼン術

ビジネスで何が伝わる? あらゆるビジネスシーンで、相手に情報を伝え、行動を促すためのノウハウを学びました。図による伝達と、文章での表現それぞれのポイントを体系的に理解できたことが大きな収穫です。 どう伝えれば効果的? 図を用いて情報を伝える際は、以前学んだ「数字に意味を持たせる」という考え方を意識します。図や表を作成する際には、何を目的に、どの情報を伝えたいのか、そしてその結果として相手にどう変化してほしいのかを想像することが重要だと感じました。また、スライド作成時には、体裁を丁寧に整える基本的なことの重要性を改めて確認しました。 職場で活かせる? 現職では、営業やマーケティングの数字を分析し報告する機会が多いため、今回学んだノウハウはあらゆるプレゼンテーションで活かせると確信しています。さらに、ビジネスライティングは、たとえ職を離れても生涯にわたって必要な能力であるため、日々実践を重ねていきたいと思います。 コミュニケーションの工夫は? 毎週の経営報告においては、作成したスライドで何を伝えたいのか、相手がどのような状態になってほしいのか、そして何を求めているのかを常に意識するように努めます。部下とのコミュニケーションにおいても、目的や手法、丁寧さを重視し、より伝わるコミュニケーションを実現していきたいと考えています。

データ・アナリティクス入門

数字が語る驚きの実態

なぜ多角的に見る? データ分析は、ただデータを見るだけでなく、さまざまな角度から比較し、分析することが重要だと感じました。数字にまとめたり、数式を用いて関係性を明らかにしたりすることで、隠れた事実に気付くことができます。また、代表値や分布、平均値と標準偏差など、基礎的な手法を通じてデータ全体の傾向を掴むことが効果的です。 どの代表値が適切? 社内で扱うデータはボリュームが大きいことが多いため、比較の際には代表値に注目する場面が多かったです。これまでは直感的に平均値や中央値を代表値としていたものの、データ全体の特徴を踏まえてどの代表値を採用すべきか再検討する必要があると学びました。さらに、業務ではデータをマトリックスにまとめたり、グラフや分布図にして視覚的に把握できる形に変換することで、数字が伝える実態をより明確に捉えることができると実感しました。 何を比較検証すべき? 大量のデータを取り扱う際は、さまざまな代表値の算出方法を試すこと、また平均値においても単純平均以外のパターンが存在することを忘れずに検証することが大切だと感じました。データを可視化する際には、「何を見たいのか」「どこを比較するのか」といった目的を明確にした上で、見たい事象が浮かび上がるよう工夫することが、今後の分析業務において重要なポイントだと再認識しました。

クリティカルシンキング入門

伝わる工夫で魅せる資料術

資料の視覚化は? 伝えたい内容は、単なる言葉だけでなく、視覚的に表現することでより効果的に伝わることを実感しました。テキストや色の使い方、資料上での順序、グラフの種類、そしてメッセージとグラフとの関連性など、工夫する要素が多々あります。これらは、単に思いつきで作成するのではなく、受け手を意識して選び抜く必要があると感じました。さらに、資料を作る際は、どの場面で誰に見せるのか、作成の目的を明確にすることが大切です。 部内外の説明は? 自分が所属する部署では、部内外に業務プロセスの改善や新規プロジェクトの導入を説明するとき、過去のデータと現状の推移を図示するなどして、なぜその取り組みが必要なのかを明確に伝えています。こうした手法は、今回学んだ内容を活かすのに非常に役立っています。また、部下の資料チェックを行う際も、相手に伝わりやすい工夫がされているか、ポイントが正確に押さえられているかを意識するように心がけています。 今後の資料作りは? 今後は、資料作成や確認の際、今回の学びがしっかりと反映され、受け手に必要な情報が探さずとも見つかるような工夫がなされているかを常にチェックする習慣を続けたいと思います。また、表やグラフの種類ごとにその効果を最大限に発揮する使い方をさらに学び、より具体的で理解しやすい資料作りに挑戦していきます。

データ・アナリティクス入門

実務で変わるデータの読み方

代表値の意味は? 代表値という概念について、これまであまり意識していなかった部分を学びました。データの種類や求める数値に応じて、平均値や中央値などを使い分け、全体の傾向を大まかに把握する考え方はとても実務的で役立つと感じました。 グラフの使い分けは? また、グラフの見せ方にも新たな発見がありました。これまで円グラフとヒストグラムを感覚的に使い分けていたのですが、なぜ今回のケースでヒストグラムが望ましいのかを言葉にする難しさを実感しました。ヒストグラムはデータのばらつきを視覚的に示すのに適しており、円グラフは各要素の割合を把握する用途に向いているという点で、両者の使い分けが明確になりました。 幾何平均って何? さらに、単純平均や加重平均については知っていたものの、「幾何平均」という概念は初めて知りました。比率や割合で変化するデータに対して、幾何平均の考え方を用いることで平均を算出する手法を、ケーススタディを通じて理解が深まりました。今後、将来予測や予算・売上の見込みを算定する際にも、この考え方は有効に活用できると感じています。 学びの振り返りは? このような抽象的な概念は、理解しているつもりでも実務で繰り返し使用しないと忘れがちであるため、資料作成や報告の際に今回学んだ内容を改めて振り返る時間を設けたいと思います。

データ・アナリティクス入門

実践で磨く、A/Bテストの秘訣

情報伝達の大切さは? 今回の学びを通して、情報が漏れなく重複なく伝わることの大切さを改めて認識しました。目的を見失わず、必要なポイントを抑えることの重要性が意識されました。 A/Bテストの効果は? 特に、A/Bテストの活用は検証のしやすさや結果の共有において分かりやすい手法であると感じました。一定の制限をかけ、絞り込むことで方向性を見失わずに進める工夫にも気づきました。 広告運用のコツは? 実務でgoogle広告を活用する中で、A/Bテストの形式で構成され、AIが複数のセンテンスを組み合わせることで広告の最適化を図る仕組みを再認識しました。小さな変更を繰り返すアプローチは、実際にすぐ活用できる効果的な方法だと実感しています。 プロモーションはどう? また、運用しているプロモーションに関しては、早速実践に移し、チーム内で共有して理解を深めることが重要だと感じました。取得したデータをもとに分析し、意見を擦り合わせることで、より精度の高い施策へと進化させていく予定です。 チームでの改善は? 今後は、A/Bテストの手法をさらに高度なものにグレードアップすることも視野に入れています。ただし、個々のスキルに偏ることなく、チーム全体でアウトプットの場を設け、ディスカッションを重ねるよう取り組んでいきたいと考えています。

クリティカルシンキング入門

データの切り口に迷ったら実践する方法

データ分析の切り口選びで何が見える? データの分け方によっては、見えてくる結果が異なることがあります。例えば、分解する切り口を誤ると、真の原因が発見できなくなることがあります。このとき、分解する切り口は「層別分解」「変数分解」「プロセス分解」の3つが有用です。これらの手法に慣れることが重要なので、自分で考えながら手を動かすことが大切です。 真の原因を探る鍵はどこに? 問題解決において真の原因を探る際には、データ分析を行いますが、その際には分解の切り口が誤っていないかどうかを確認する必要があります。また、お客様へのヒアリングの中でMECEおよび5W1Hを意識することで、真の原因や現状を把握する際に役立ちます。 問題解決にMECEはどう活用する? 問題の特定と分析において、問題を構成する要素を重複なく漏れなく分解することで全体像を把握しやすくなり、また問題の原因を特定する際に全ての可能性を考慮して整理することができます。業務プロセスの改善では、業務フローをMECEに分解することで効率化の余地を明確にします。データ分析とレポーティングでも、データをMECEに整理することで分析の精度を高め、クライアントにわかりやすく伝えることができます。加えて、プロジェクト管理ではプロジェクトのタスクをMECEに分解し、抜け漏れなく管理します。

クリティカルシンキング入門

効果的な伝え方を学び施策提案に自信がついた理由

資料作成の基本ステップとは? 相手に伝えたい内容を効果的に伝える資料の作成方法を学びました。以下のポイントに基づいて説明します。 まず、伝えたい内容を一文にまとめ、しっかりとフレーズ化します。そして、フレーズ化した内容の根拠としてデータを順番に提示し、相手に情報を探させないようにします。さらに、データの見せ方についても工夫し、適切なグラフや表を用いることで、伝えたい内容を明確に表現します。フォントの大きさや色、太さなどにも注意を払い、丁寧にスライドを作成する必要があります。また、相手に読んでもらうために見出しを工夫することも重要です。 新規人事施策への応用は? この方法は、新規人事施策の立案時に活用できそうです。施策を上司に説明する際や、役員・経営層向けの説明時にも役立ちます。さらに、社内承認取得後に社員向けおよび社外向けに開示する際の説明でも、この手法を効果的に使うことが期待されます。 スライド作成の設計図は? スライドを作成する際には、まず設計図を作ります。最も伝えたい内容や決裁を取得したい内容を一文にまとめ、フレーズ化します。その後、フレーズ化した内容の根拠となるデータを順番に提示します。データの見せ方も工夫し、伝えたい内容に合わせて効果的なグラフや表を用いることで、相手に理解されやすいスライドを作成します。

データ・アナリティクス入門

問題解決力を磨く3つのステップ

問題の原因をどう理解する? 問題の原因を探る際には、単純に数字に飛びつくのではなく、割合などを他の数字と条件を合わせ、その数字の本質を理解し、原因を考える必要があると学びました。 仮説の選択基準は何? また、複数の仮説のうちどれを選択すべきか簡単に判断できない場合には、判断基準を設定し、仮説ごとに評価し点数を付ける手法を学びました。その際、判断基準項目の影響度に応じて重み付けを行う必要もあることを理解しました。 新システムの導入検討はどう行う? 新しいシステムや運用の導入検討を行う際には、メリット・デメリットごとに判断基準を設け、現行と比較することで、周囲に納得感を持ってもらえる説明ができると思います。また、収支検証では、単純に数字に飛びついて結論を出すのではなく、委託されている人数や内容、イレギュラー案件の有無など、できる限り事情を細かく理解し、条件を揃えた上で検証を進めるよう意識します。 日常的な思考の癖付けの重要性 日常的に「この物事の切り口は何だろう?」と意識することで、必要なときに的確な判断基準をすぐに想定できるようになりたいと思います。そのため、日頃から思考の癖付けを行うことが重要です。また、数字を扱う際には、数字同士の条件が合っているかどうかや、数字ごとの持つ重みを意識するようにします。

データ・アナリティクス入門

データ分析で市場予測する力が身についた

問題解決の手順とは? 問題解決の手順として、What→Where→Why→Howの流れに沿い、データを基に判断してステップを進めるフレームワークや分析手法を学びました。 特に、データを扱う際には、平均だけでなく、標準偏差や中央値など、適切な表現方法を用いることが重要であると理解しました。 ロジカルな判断を支える方法は? 3Cや4Pなど、論理的に判断するためのフレームワークも学びました。これにより、何か判断基準や切り口を持って考えたり、仮説を立てることができるようになりました。 市場分析のアプローチをどう変えた? 市場分析についても学びました。以前は既存のデータから何かを導き出そうとしましたが、今は自ら立てた仮説から始め、データを比較分析するという方法に切り替えました。 また、「豪州の顧客は〇〇を求めているため、このエリアにも需要があるだろう」という仮説を基に、市場の価格や利回りを分析したいと考えています。この仮説を例にして、Where〜Howまでの仮説検証を行い、加重平均やフレームワークの有効性を試したいです。 結果の共有と学びの深化を目指して 結果を部内に発表し、自らの考え方としてしっかりと習得することを目指しています。講座のワークや動画も見返しながら、さらに理解を深めていきたいと思っています。

データ・アナリティクス入門

分布も味方に!データ分析の学び

平均値と分布への疑問は? 代表値を用いた分析手法が有効であると実感しました。たとえば、平均値(単純平均)を用いることで全体像を把握できる一方、データがどの程度集約されているのか、またはばらついているのかを判断することは難しいため、平均値とデータ分布の両面から検証する重要性を学びました。 データ分布の検証は? データ分布を確認する手法としては、標準偏差が挙げられます。標準偏差の値と集計結果に大差がなければ、分析の正確性が高まると感じました。また、分析内容に応じて単純平均、加重平均、幾何平均、中央値など様々な代表値を使い分けることで、異なる角度からの洞察が可能になることに気づきました。 仮説検証の進め方は? さらに、データ分析は比較を前提としているため、問いやゴールを明確に定め、仮説の設定、データ収集、仮説検証というプロセスを徹底することが大切だと学びました。これを繰り返すことで、より精度の高い結論に到達できると実感しました。 実践例の応用は? また、実践例として、交通系ICカードの決済実績を分析する際には、切り口別に代表値や分布の状況を組み合わせる手法に取り組みたいと感じました。ヒストグラムなどを用いてビジュアル化することで、報告相手にわかりやすく情報を伝える工夫が、今後の分析の質向上につながると考えています。

「手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right