アカウンティング入門

丸亀製麺で紐解く企業の数字

財務はどう活かす? 本日の学習では、財務数値を単なる数字として覚えるのではなく、ビジネスモデルやオペレーション、経営判断と結びつけて考える視点が深まりました。 丸亀製麺の分析は? Gailの問5に取り組む中で、丸亀製麺を題材に、店舗設備、原材料、人件費、メニュー開発、立地など、企業活動の各要素に着目して分析する練習ができました。それぞれの活動にどの程度のコストがかかり、その補填にどのような資金調達が必要なのかを構造的に考えることで、PL・BS・CFが企業の動きを反映した仕組みとして理解できるようになりました。 分析フレームワークは? また、企業を分析するための有効な思考フレームワークも身につけることができました。特に以下の点が印象に残りました。 ■バリューチェーン  企業の業務を活動単位に分解し、どこでコストが発生しているのかを整理する手法。 ■コスト構造(固定費 × 変動費)  各費用が重いのか軽いのかを判断するための基準となる。 ■軽資産モデル vs 重資産モデル(BSの視点)  企業のリスク構造、競争力、そして資金調達の方針の違いを読み解くための視点。 フレーム連携の効果は? これらのフレームワークを組み合わせることで、たとえば、丸亀製麺と他の類似企業との違いや、先日の例であるANAとZOZOの資産構造の違いを財務視点で比較する力が養われました。総じて、企業活動からコスト構造、そして財務数値へとつながる流れを考え、分析フレームワークを活用して整理する技術が大きな学びとなりました。 今後の実践はどう? 今後は、今回学んだ「ビジネスモデル → コスト構造 → 財務数値」のつながりを、研修設計やクライアントへの提案に積極的に取り入れていきたいと考えています。さらに、人事・組織の施策がPLやBSに与える影響を説明できるよう、説得力を高めるために、以下の3点を実践する所存です。 ①事例企業を分析する際に、まず活動をバリューチェーンで分解する習慣をつける。 ②固定費と変動費の構造を意識して見る。 ③軽資産/重資産モデルの違いを踏まえ、企業の強みとリスクを整理する。

クリティカルシンキング入門

スライド作成の鉄則:シンプルと工夫の妙技

シンプルさと表現工夫のバランスは? 伝わりやすいスライドを作成するために、私が印象に残ったのは以下の二点です。 まず、装飾しすぎないこと。そして、細部まで表現を工夫できることです。一見するとこれらのポイントは相反するように思えるかもしれませんが、何を伝えたいのかメッセージをシンプルにすることで両立できると感じました。メッセージが複数あると、その中のスライドで示す内容が増え、何が伝えたいのか見えにくくなってしまいます。また、目的とそぐわない内容が含まれると、その労力が無駄になってしまいます。そのため、今回の内容を実行する前に、全体のスライド構成の検討や「誰に・何を伝えると、資料の目的を果たせるのか」を考えることが重要だと感じました。 読んでもらえる書き方のポイント 次に、「ビジネスライティング」に関しての学びです。私は「読んでもらえる」という視点を意識できていませんでした。読んでもらうためには以下のポイントが重要でした。 - アイキャッチをおくこと - 文の堅さ・柔らかさを相手に合わせること - 体裁を整えること 特に最初のアイキャッチは、相手が何を言ったら興味を持ってくれるのかを考える必要があり、難しいと感じました。 説得力のある資料作成の手順 関係者を説得するための資料作成においても、以下の手順を意識することが大切です。 - 何を伝えるべきか - どんな数字があるとよいのか - それを表すグラフ・表はどんなものか - 読み手に情報を探させていないか(配置、色、装飾のチェック) また、依頼メールに関しても、誰向けなのか、何を読んでほしいのかを意識することが大事です。 過去資料の振り返りと今後の活用法 現在、育児休暇中であるため資料を作るシーンが少ないのですが、過去資料についての振り返りを行いました。具体的には、以下の点を見直しました。 - 誰に何を伝えたかったか - メッセージ内容は明確だったか - そのメッセージを表すグラフ・表は適正だったか(種類、色、配置など) - 興味を引き付けるためにどう工夫できたか 以上の学びを元に、今後の資料作成に活かしていきたいと思います。

クリティカルシンキング入門

成長を実感できる振り返りの重要性

学びの振り返りをどう活かす? これまで学んだ内容を振り返ってみると、まだまだ身についていないことが多いと感じました。また、ライブ授業で他の受講者たちが積極的に発言している姿を見て、自分も講座修了後に学んだことを振り返って、しっかりと実践していこうという意識が強まりました。 問いを意識する重要性とは? 人間は考えやすいことや考えたいことを考えてしまう癖があります。自分の考えをチェックするもう一人の自分を育てることが大切だと、Week1の講義で強く印象に残りました。しかし、まだ経験や思いつきで考えてしまうことが多いと感じています。また最近、部内でのある問題に対する認識がずれていることに気づきました。この経験から、問いの形で問題を特定し、問いを意識し続けること、そして問いを共有することの重要性を改めて感じました。 コミュニケーションをどう改善するか? 長い間同じ会社や部署にいるため、相手も自分と同じ認識を持っているだろうと決めつけて話してしまうことが多いです。これからは省略せず、相手の立場に立って話すよう心掛けたいと思います。また、思いつきや自分の経験から判断してしまうことが多いため、結論を出す前に本当にその結論で良いのかを深堀りすることも意識していきます。 プロセス共有の大切さとは? 部内で検討の機会が多いため、「イシューを問いの形で特定する」、「意識し続ける(途中でずれていないか確認する)」、「検討メンバーで共有する」というプロセスを実施したいです。業務分析をする際には、データをただの数字として見るのではなく、細かく分解して検討するように心掛けます。また、日々のメールやプレゼンはなんとなくで作らず、相手に読んでもらえるように、情報を探させない、明確に意図が伝わるよう意識して作成します。 継続的な学びの習慣をどう築く? まずは、本講座で学んだことを自分の言葉でまとめ、定期的に確認する習慣をつけることから始めたいと思います。学びを自分のものにするためには反復トレーニングが必要で、一時的に業務スピードが落ちるかもしれませんが、あきらめずに実践していきたいと思います。

クリティカルシンキング入門

データ解析で見える新たな地平線

解像度の高い情報化方法は? 単なる数値データを解像度高く意味のある情報にするための方法について考えました。まず、データの加工では、比率を見たり加算したりとひと手間加えることで、情報を活用できる状態にします。また、グラフ化することで、数字では見えづらかった傾向を視覚化し、理解を深めることができます。 データ分解のポイントは? データの分け方については、グラフ化した後にどの粒度で分けるかが重要です。機械的に分けるのではなく、仮説を持って複数のパターンを試行錯誤することで、有意義なデータを導き出すことができると考えています。分解のポイントとしては、事柄を「いつ、誰が、どのように」といった複数の視点から見ることが重要です。分解した結果、傾向が見えない場合でも、その視点では傾向が見られないという意義のある結果になります。さまざまな切り口で分解し、一度立ち止まって本当に正しいのかを考えることも大切です。 MECEに基づく問題解決とは? 問題解決のステップを踏む上では、MECE(モレなく、ダブりなく)を意識します。MECEの切り口には、全体を定義して部分に分ける層別分解、事象を変数で分ける変数分解、ある事象に至るプロセスで分けるプロセス分解などがあります。これにより、モレなく網羅的な分析が可能になります。 フィードバックの重要性 最後に、物事をMECEを軸に分解して考える際、考え方の偏りによってモレなくという部分が満たせなくなることがあるため、自身の考えの癖を常に意識し、他者からのフィードバックを受けて手法の精度を高める必要があります。また、分析結果が仮定と近い場合でも、すぐに結論付けず、一歩踏み止まって再考する習慣を大切にしたいと考えます。 システム運用の問題予防はどうする? システム運用における問題予防の観点では、膨大な数値データの中から意味を見つけ出し、データを扱う方法を変えていくことが重要です。H/W、M/W、NWの性能レポートや監視ツールのデータから、予防保守という視点で今後起こり得る問題の傾向を掴むようにデータを活用していきたいと思います。

戦略思考入門

経済の本質を学び行動計画に活かす

規模と範囲の経済性は? ゲイルでの学習を通じて、経済の基礎概念である「規模の経済性」や「範囲の経済性」について学びました。規模の経済性については、生産量が増えることでコスト削減が可能になるという原理を理解しましたが、実際にはロスが生じる可能性があり、注意が必要です。一方、範囲の経済性では、既存の資源を有効に活用し、新たなビジネスチャンスを生むことができる点を学びました。例えば、業界の垣根がなくなりつつあるコンビニやドラッグストアの事例がこれに該当すると理解しました。同時に、多角化のリスクを認識し、安易な事業拡大を避けるべきであることも学びました。 本当に正しいのか? これまでなんとなく受け止めてきたことを、「本当にそれで正しいのか?」と問い直すことの重要性を改めて感じました。感情や一般的な認識に基づいて判断すると、大きなミスにつながる可能性があります。単なる感覚的な理解ではなく、本質的な意味を理解することが重要です。 総合演習の成果は? 総合演習では、学んだ知識を実際に活用し、ビジネスケースを分析する経験を積みました。これまでの学習が役立ち、複数の視点から問題を分析し、最適な解決策を提案する力が求められる場面が多く、とても良い経験となりました。特に、安易に施策を実行に移さず、目的や市場分析をしっかり行った上で最適な施策を打てるように心掛けたいと思います。 部署の経済性は? 現在の部署のメイン業務が業務集約であるため、「範囲の経済性」は部署内の異なるチーム間で活用できそうです。あるチームで開発したDX業務を他チームの業務に取り入れることは実行可能であると感触を得ました。また、規模の経済性はすでに私の所属部署に適用されており、業務集約と自動化により生産量が増えることで、コストを抑えながら効率を上げることが叶っています。 数字で計画見える? 行動計画は、企画立案時には定量的な数値を活用し、見えない数字を引き出せるよう目指します。また、全体を俯瞰したうえで課題を解決に導くために、戦略的思考を習慣化し、思考力と判断スピードの向上を図りたいと考えています。

クリティカルシンキング入門

データ分析の力で見えない答えが見えてくる

分解という手法を学ぶ 与えられたデータをどのように活用するか、数字を味方にする「分解」という手法を学びました。情報を鵜吞みにするのではなく、手を動かしグラフ化するなどの簡単な工夫で、新たな分析・類推の元となることを再認識できました。 分解のポイントとは? 分解の方法にはいくつかのポイントがあります。基本として、MECE(モレなく、ダブりなく)を目指すこと。そして全体の範囲を明確に定義することで、精度が増すと感じました。層別分解(例:年代別)、変数分解(例:売上=単価×個数、どこが増減したか)、プロセス分解(例:入店⇒退店のプロセスで分ける)などの手法が紹介されましたが、感覚ではなく一つ一つ丁寧に試行錯誤することで、結果に繋がる可能性が広がります。仮に結果が出なかったとしても、その切り口に変化がないという情報が成果としてあり、失敗ではないと認識を新たに持つことができました。 MECEと分解方法の実務応用 業務上、様々な数値を取り扱う機会があります。新規業務のフロー作成時や集計業務、既存のルーティン業務に関しても、MECEや分解方法を意識することで、データの抽出方法が変わると感じました。 ミーティングでの分解活用法 新規業務フローのデータや数値取り纏め方法をMECE、分解方法を意識しながら切り口に変化をつけて分解を繰り返し、現状気付けていない数値の傾向や改善策を用意し、関係各署に意見具申していきます。ミーティングの機会も多いため、事前に議題を確認し自身の提案パートに関してはMECE・分解方法を意識し、他に懸念材料や他の提案方法がないかを模索する癖をつけます。 ルーティン化するための工夫 癖付けを具体的に行うため、項目ごとに分解方法をルーティン化します。まず全体の範囲を定義し、5W1Hで問題点を明文化し、分解方法と切り口を選定、MECEを意識して内容を再確認します。これを最低2往復行います。 方法の変化と学習の進捗 最適解とは思いませんが、反復トレーニングの一環として上記手法を学習期間中に実施し、途中で方法も変えていく予定です。

クリティカルシンキング入門

データ分析で発見した新たな視点

分解ってどう使う? データ分析を行う際、「分解」の重要性とその手法について新たな知識を得ることができました。単に数字を切りの良いポイントで区切るのではなく、まず全体を適切に定義し、必要な情報を明確にした上で、どこで分解すれば全体像が把握できるのかを試行錯誤することが重要であると演習を通して理解しました。 数字の見える化ってどう? さらに、数字をグラフ化して視覚的に表現したり、比率に変換して加工することで、数字だけでは発見しづらかった情報が明らかになることを学びました。分析の初めには、全体を定義して目的を設定し、MECEを意識しながら抜け漏れなく分析を進めることが、業務の効率的な進行に寄与することを認識しました。どのような結果になっても、価値や発見があり、それらはすべて自らの成長に繋がるものだと考え、ポイントを押さえて思考を続けていきたいです。 目的設定ってどうする? 売上やWebページのアクセス数を分析する際に、今までは表面的な数字を追うだけで、原因や改善点が明確になりませんでした。しかし、まず全体を定義して目的の方向性を決めることから始め、MECEを活用しながら漏れや重複を避けつつ課題を分解して解決を図りたいと考えています。分解後には、グラフや比率といったさまざまな視覚化方法を用いて、最適な分析手法を見つけ出し、短期・中期・長期目標の達成に必要なアプローチを定期的に戦略的に見直していきたいと思います。 毎月どうチェックする? 売上やWebページのアクセス数の分析を日々確認し、毎月、前月との比較を行いレポートを作成したいと考えています。基本的には、最初に決めたMECEを活用した分解で分析を進めていきますが、毎月自身の分析方法で問題が解決できているかを見直し、分類についても考え続けたいです。 PDCAをどう進める? 単一の仮説ではなく、2~3つの仮説を立て、その中から最も信頼性があり改善しやすいものを選び、行動に移していきます。2週間から1ヶ月試行し、うまくいかない場合は次の仮説で改善するというPDCAサイクルを実行していきたいと思います。

クリティカルシンキング入門

疑問から見える成長の軌跡

分かるってどう感じる? 「分かる」という言葉は、物事を分けることで理解に近づく手段として捉えられると感じました。実際の語源は分かりませんが、納得感があり、たとえ分解しても答えが出なくても「わからない」ことが認識できるのは、前進であり失敗ではないという点に励まされました。結局、分解するかどうかに迷う必要はない、まずは行動することが大切だと理解しました。 大人客減少の理由は? また、ある分析ツールを通じて、個人客と大人の客数の減少が一致した際に、大人の個人客の減少が原因だという仮説が、疑問を持たずに受け入れられる可能性に気付かされました。このような現象を見過ごさないためにも、分析の際は常に「本当にそうなのか?」と問いかける姿勢が必要であると実感しました。この経験から、自分の思考のクセを見直すと同時に、第2の自分を育てる意識が生まれました。 議論で何を疑う? 今週は、数字を扱う中でも特にクリティカルな思考法を学びました。会議や日常の分析現場では、相手の議論の前提部分まで掘り下げ、常に「本当にそうなのか?」と疑問を呈することを意識しようと思います。会議で発言する際も、自分が第2の自分として疑問を持ち込みながら議論を進めるのは、非常に意義深いと感じました。 数字の動向は? 私は金融業界で働いており、日々数字と向き合いながら、なぜこのような動きになるのか、算出根拠や定義がどうなっているのかを考えています。毎週の会議では、提示された数字から自分なりの仮説を立て、皆で議論を深めるとともに、再発防止策についても意見を出し合っています。 解釈は正しい? 今回の学びは、分析や仮説構築の際の基本的な態度、つまり「本当にその解釈でよいのか?」と自問することの重要性を改めて認識するきっかけとなりました。これからも疑問を持ち続け、分析を分解しながら第2の自分の視点で仮説を立てることを実践していきたいと考えています。 話し合いで解決? 分析で行き詰まったと感じたときは、自分の考えを数人に投げかけて対話することで、新たな気づきや視点が得られることが多いです。

データ・アナリティクス入門

データが語る学びの軌跡

どのプロセスが必要? 分析とは、データ同士を比較する行為であると捉えられます。そして、分析は仮説を立てることから始まり、目的や問いを明確にした上で、仮説設定、データ収集、そしてその仮説を検証するプロセスを踏む、いわば「プロセス×視点×アプローチ」が重要となります. どの視点が有効? 分析における視点としては、インパクト、ギャップ、トレンド、バラつき、パターンの5つが挙げられ、各々の観点からデータを多角的に検証することが求められます。一方、アプローチとしては、グラフ、数字、数式の3種類が存在し、状況に応じた手法の選択が大切です. どの代表値を使う? 数字によるアプローチでは、まずデータの中心位置を示す代表値を注視します。代表値には単純平均、加重平均、幾何平均、中央値などがあり、また、データの散らばりを示す標準偏差などを用いて、他のデータの状態を把握することが重要です。代表値についても、観点により複数の値が存在するため、適切な選定が必要です. 相関はどう読む? さらに、数式化の側面では、「欲しい結果に対して何か効いているか?」という視点で、相関関係を見いだすことができます。ただし、相関が必ずしも因果関係を示すわけではない点に留意しなければなりません. 今後はどう進む? 通常、業務においては年度別の件数や特定分野の傾向を、主に単純平均から読み取っていましたし、どのグラフで可視化するかに対して意識が十分ではなかったと感じます。しかし、今回の学習を通じて、目的を明確にし、どの視点でデータを見るべきか、どのアプローチが最適かということを、1つ1つ丁寧なステップとして考える重要性を学びました。また、相手に説明する際には、ビジュアルを活用することで情報がより伝わりやすくなることも実感しました. 次に何を分析? 今後は、何を分析したいのか、何を知りたいのかを明確にした上で、「代表値」「バラつき」「数式化」の各定義や使用すべき場面を理解し、目的に沿った手法を適切に選択しながら分析を進めていきたいと思います.

データ・アナリティクス入門

ギャップに迫る!本質解明の軌跡

計画と実績はどう違う? 年間利益構造の表を見ていると、大きな数字や計画にない項目に目がいきがちですが、計画値と実績値のギャップに注目し、どの項目がどれだけ影響しているのかを把握することが重要だと感じました。 何を見落としている? また、これまで主体的にHowばかりを考えていた自分に気づかされました。さまざまなアイディアが出やすいからこそ、関係者全員が納得するHowを見出すためには、最初に【What】問題の明確化、次に【Where】問題箇所の特定、そして【Why】原因の分析、最後に【How】解決策の立案というステップを確実に踏むことが大切だと理解しました。 理想と現実は何が違う? さらに、業務でKPIを設定する際に、全国平均に頼るだけでなく、「あるべき姿」と「ありたい姿」という二つの視点の違いに気づく機会がありました。現状の分析で「あるべき姿」に留まるだけではなく、自分自身が描く理想の「ありたい姿」まで意識してKPIに反映させたいと強く感じました。 KPI改善は何から? 健康経営やエンゲージメント向上、女性活躍推進、男性育休推進といった分野では、現状分析、KPI設定、課題解決、施策の立案・実行を数値に基づいて進めることが求められます。いずれの場面でも、【What】、【Where】、【Why】の各視点で問題を正確に捉えた上で、【How】の提案を行うことが不可欠と実感しています。 具体的には、健康経営におけるKPIの見直しとして、まず現在設定しているKPIの現状を確認し、数値やグラフでギャップを明らかにしました。次に、相関するKPIの状況を把握し、どの指標が課題となっているかを明確にしました。加えて、多くのKPIの中から、進捗が思うように進んでいないものや他の進捗を阻むものを特定し、専門家の視点を参考にしながら原因を分析しました。その上で、現行のKPIが適切かどうかを再検証し、「あるべき姿」と「ありたい姿」を改めて確認しました。最後に、課題の原因に対して具体的な解決策を検討し、実行可能な施策へと落とし込むプロセスを実践しました。

アカウンティング入門

数字で見せるカフェ成功術

カフェ開業は何から始まる? カフェ開業をテーマにした実践演習では、大変有意義な学びを得ることができました。ミノルのカフェのコンセプトをもとに、どこにどのようなお金がかかるのかを考える過程では、まず企業や業態の特徴、ビジネスモデルを理解してからP/L(損益計算書)を読む必要性を再認識しました。 売上高の秘密は? また、なぜミノルのカフェが高い売上高を実現できているのか、両カフェのP/Lを比較することで、その背景にある理由を探ることができました。このプロセスでは、同業態の他企業の決算説明やニュースリリースなどから好調の要因を把握することが大切だと感じました。 費用削減の落とし穴は? コスト削減についても学びがありました。営業利益を向上させるために費用削減を行うと、時には売上高そのものが低下するリスクがあるため、自社の狙う層やコンセプトに立ち返りながら慎重に検討することが重要だと痛感しました。 現場改善の第一歩は? さらに、既存の飲食事業のP/Lを改めて確認する行動計画も整理できました。今回のカフェ事例を参考に、自店舗のコンセプト・業態・ターゲット層に照らし合わせながらP/Lを精査し、実際の店舗運営で現場の状況を確認します。P/Lの理解と現場の視察を組み合わせることで、コスト削減やスタッフ教育などの課題を抽出し、改善につなげる狙いです。 決算の全体像は? 今週の学習内容を振り返ると、連結決算短信や決算説明会の動画(特にP/Lの部分)を再確認し、数値面では前年同期比で売上高、営業利益、経常利益が伸びている一方、特別損失の計上により当期純利益が前年度比でマイナスとなっている状況を理解できました。減損損失や事業整理損といった用語には馴染みがなく、P/Lだけでは全体像がつかみにくいと感じました。簿記や講義が進むにつれて理解が深まると期待していますが、企業の連結決算を読み解く難しさを痛感しました。普段、決算短信をどのように確認しているか、さらっと理解するだけで良いのか、あるいはもっと勉強すべきか、アドバイスがあれば嬉しいです。

データ・アナリティクス入門

データ活用で広がる戦略の可能性

平均概念は何を表す? これまで何となく使用していた「平均」の概念が、データの代表値を示すためのものだと理解が深まりました。代表値の考え方を知ったことにより、平均以外のデータも考慮し、データの分布(ばらつき)に着目することで、より効果的な分析ができる可能性が広がりました。 データ比較はなぜ大切? データ分析においては、他のデータと比較することでその意味合いを引き出すことが重要です。そのため、データの特徴を一つの数字に集約したり、グラフなどのビジュアル化によって視覚的に捉えたりする方法があります。 中央値とばらつきの違いは? 数字の特徴を捉える手段には、データの中心を示す方法とデータのばらつきを示す方法の2つがあります。データの中心を示す方法としては、単純平均、加重平均、幾何平均、中央値があり、ばらつきを示す方法としては、標準偏差が用いられます。データのばらつきは主に正規分布に従い、正規分布では標準偏差の2倍の範囲に全体の95%が収まるという2SDルールがあることが分かっています。 なぜグラフが効果的? データ分析のアプローチには、グラフ、数字、数式があります。特に、グラフはビジュアル化による情報伝達の手段として有効です。 どう鋭い問いを引き出す? これまでのデータ活用では単純平均や加重平均が主に使われてきましたが、幾何平均や中央値、標準偏差を活用することで、より鋭い問いや回答が得られる可能性があります。特に、データのばらつきを分析することで、分布ごとの傾向が明らかになり、自分の製品原価分析に応用できる予感があります。 レポートで戦略を描く? 現在、私は上半期の業績分析のレポートにおいて、売値と製造原価の比率や製品1つあたりの売上単価の分析を進めています。これまでのように平均のみを算出するのではなく、ヒストグラムなどを用いてデータのばらつきを考慮することで、価格帯ごとの相関関係も取り入れたレポートを作成し、再来週までに提出する予定です。このレポートが今後の販売戦略立案に貢献することを期待しています。
AIコーチング導線バナー

「数字」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right