データ・アナリティクス入門

問題解決力を高め、シナリオ実践へ挑戦

問題解決のプロセスとは? 問題解決のプロセス、What、Where、Why、Howについて学びました。私は前職でQC的な問題解決を学び、問題やボトルネックの特定、「なぜなぜ分析」、計画、アクションのような手法で考える癖があり、今回学んだ内容と似ている部分が多いと感じました。しかし、元の思考フレームワークに戻りがちな自分を再認識しました。 フラストレーションを解消するには? データ分析や見える化は行っているものの、仮説の検証や具体的なアクションを自発的に行っていない部署の現状にフラストレーションを感じています。おそらく、具体的なアクション(How)を実行できないと諦めているために、根本原因(Why)の追求が疎かになっているのではないかと考えています。 新たなシナリオ作成と実践法 今回学んだことを基に、「How」を実行できると仮定してシナリオを作成し、実践してみたいと思います。また、一連のプロセスを効率的に進められるよう、自身をトレーニングし、さらにBIツールやPythonを活用して知見やスピードを向上させる手法を学びたいと考えています。

デザイン思考入門

試作から納得へ、学びの軌跡

ムービー構想はどう? 中期経営計画の浸透プラン立案の際、自身のビジネスユニット向けにVisionムービーを作成する提案がありました。そこで、自分なりのムービーのストーリー構成を具体化するために、イメージしている写真を集め、どのタイミングでどのようなCGイメージを使用し、どんな言葉をかけるかをスライドにまとめました。 説得はうまくいった? この資料は実際にシニアとの会議で説明し、予算を含めた外部コンサルへの委託提案として承認を得ることができました。講義で学んだ知見を提案資料に反映させたことで、シニアの納得度も高まり、試作段階の重要性を再認識する結果となりました。 挑戦は成果出た? また、講義では実際に製品を作ることがデザインや動画作成以上に効果的である点を理解しました。一方で、今回の課題であるバックパック制作のノウハウや美的センスが不足していたため、AIを活用して動画作成とプレゼンスライドの作成に挑戦しました。使用したAIやプロンプトに限界はありましたが、成果物を作成することができ、プロセス自体の重要性を理解する良い経験となりました。

戦略思考入門

ナノ単科で実感する経済の秘密

規模経済を探るのは? 本講座を通じて、まず「規模の経済性」について学びました。固定費と変動費の分析を正確に行わないと不経済に陥る可能性があるため、コスト構造の把握が非常に重要であると実感しました。 習熟進展はどう考える? 次に「習熟効果」に関して、累積的な生産性の向上がコスト削減に寄与する一方、経験や知見が一定の段階に達すると効果が薄れる可能性があるという点を学び、業務改善のタイミングを見極める大切さを感じました。 範囲効果は何か? また「範囲の経済性」では、既存の資源を他の事業にも活用することで、個別に行う場合よりも効率的にコストを削減できることに気づかされました。技術投資のシナジーを活かし、新規事業の検討につなげる視点が印象に残りました。 ネット未来はどう? 最後に、「ネットワークの経済性」については、参加者が増加するほど利便性が向上し、実際のフィードバックが大きな効果を生む仕組みがあることを学びました。現状、SNSなどの活用が十分でないため、今後の展開に向けてネットワーク利用の検討が必要だと感じました。

データ・アナリティクス入門

考える力を広げる3C4P活用術

フレームワークの効果は? ゼロベースで仮説を立てるより、フレームワークを用いることで視点が広がり、仮説の網羅性が向上すると感じました。これまでは感覚に頼ってひとつの答えに固執することが多く、思考が止まる場面もありました。しかし、実践演習では3C4Pを活用することで、問題に対して一歩踏み込んだ考察ができるようになりました。 データ収集の意義は? また、仮説検証においては、自分に都合の良いデータだけでなく、比較のための情報を収集する重要性を学びました。反対意見を含む情報をも集めることで、仮説の説得性が高まりました。提案する側とされる側では視点や優先順位が異なるため、複数の仮説を持つことが必要だという考えにも納得できました。 目的と結論の整理は? さらに、仮説には問題解決だけでなく、目的や時制で整理される結論の仮説があることを知りました。問題解決のプロセスであるWhat、Where、Why、Howという問いは、日々の目標設定において部下との面談で活かされ、お互いに何が問題で何に取り組むかを具体的にすり合わせることができたと実感しています。

クリティカルシンキング入門

ピラミッドで魅せる説得術

根拠の整理はどうする? 相手に自分の主張を伝える際には、まずどのような分類で根拠づけができるかを考え、それぞれの分類に対してできるだけ多くの理由を用意することが大切だと学びました。主張と根拠を混ぜず、各分類ごとに整理して提示することで、相手が主張と根拠の関係を理解しやすくなり、説得力を高める効果があると感じました。また、この関係を視覚的に整理するために、ピラミッドストラクチャーというツールが有効であることもわかりました。 観点整理は何が大事? 新しいプロジェクトを発足する際に、作業工数の見積りやスケジュール策定を行い、その根拠を上長に説明する場合、複数の要素をまとめて説明してしまうとわかりにくくなると反省しました。まずどのような観点で理由づけができるかを整理し、それぞれに根拠を用意して観点ごとに説明することで、より理解しやすい説明ができると実感しました。今後同様の業務が発生した場合、ピラミッドストラクチャーを活用して伝えたい内容を整理し、これまでの説明資料と比較することで、自身の説明がどのように変化したかを確認してみたいと思います。

データ・アナリティクス入門

分解思考で掴む改善のチカラ

原因分析はどう進める? 原因の分析にあたっては、まずプロセスごとに分解し、確認することが大切だと感じました。特に「what/where/why/how」を意識し、まず「where」から入念に分析することで、その後の「why」や「how」の解像度が高まると理解しています。 A/Bテストってどうやる? また、A/Bテストが有効な手法であることを学びました。その際、検証する「要素」は極力少なくし、その他の条件は共通とすることで、スコープを狭めることが重要だと感じました。実際にアプリ上でプッシュ通知とバナーを用いたA/Bテストを実施した経験から、振り返ると「キーメッセージ」に差が生じてしまった点が課題として残りました。 ログイン改善は何が? さらに、アプリのログイン率向上を図るため、ログインに至るフローを細かく分解し、原因の追究を行いたいと考えています。特に、パスワード設定の箇所で離脱するユーザーが多いという仮説に基づき、検証からスタートする予定です。その後の改善策として、ユーザーインタビューやUIテストの実施を検討しています。

データ・アナリティクス入門

チームで切り拓く未来への一歩

データ検証の意味は? データを検証し、仮説を立てた上で再びデータを確認する―リスクを抑えながら新たな可能性を模索する問題解決のプロセスについて学びました。その中で、A/Bテストの活用についても知ることができました。 実践規模の見極めは? 仕事に活かす方法として、プロセスをどの規模で実施するかが、データ抽出の視点や意思決定の重要度によって左右される点に気付かされました。企業の規模によっては、実行が難しい場合も出てくると感じました。 チームでの一歩は? そこでまずは、自分のチーム内で進められる範囲から取り組んでみようと思いました。 チーム育成のポイントは? チーム内での人材育成プロセスに、データの検証と仮説の立案を取り入れ、今後の計画に反映させたいと考えています。近年、チームメンバーとなる人の出身部署が多様化しているため、前提となる知識やその特性にも違いが出ていると感じます。これにより、それぞれの出身部署や知識の有無を的確に把握し、最終的には一人前のチームメンバーとして成長するプロセスを、より効率的に進めたいと思います。

クリティカルシンキング入門

ナノ単科で描く未来への学び

意味ある問いは何? 分析を進める際は、適当な手法に頼るのではなく、まず意味のある問いを立てることが大切です。その問いに対して、イシューを明確にし、論理的な枠組みの中で回答を導くことが求められます。また、思考の偏りを排除するためには、フレームワークを活用し、他者との反復練習を重ねることが有効です。 効果検証はどうする? 一方で、制作物の効果検証においては、最初に問いを設定し、その問いに基づいて分析を行うことが基本です。これにより、クライアントの課題を解決するための講義の再設計や、講義の集客向上に向けた具体的な提案を行い、成約の精度をより高いものにすることが可能となります。 講義資料は再検討? さらに、講義資料に関しては、顧客の反応が芳しくない箇所を的確に洗い出し、批判的な視点から見直すことが必要です。これまで経験や感覚で作成していた部分は、一度解体し、フレームワークを用いて再度根拠を明確にする方法が有効です。可能であれば、他者との対話を通じて率直な意見を取り入れることで、内容のブラッシュアップにつなげることが求められます。

データ・アナリティクス入門

多視点比較で広がる学びの世界

比較の意義は? 分析の要点は、比較にあるという点が非常に印象深かったです。動画と同様に、特定の企業を導入するという目的が先行しがちで、その情報をもとに比較対象を探すことが多かったため、ディスカッションを通してさまざまな視点が存在することを学びました。今後の学習では、固定概念にとらわれず、他の選択肢についてもしっかりと検討することが必要だと感じています。 異なる視点は? また、前述の通り、導入の目的が一方に偏る傾向があったため、別の視点も重要であると再認識しました。自分自身の考えだけに依存するのではなく、異なる問題意識や視点も考慮しながら、比較を進める際に他の検討要素がないか常に意識するよう努めたいと思います。 検証はどうする? さらに、提案時にはイシューを軸にして比較の正しさを検証し、どのグラフが正確な情報を伝えられるかを熟考することが不可欠だと感じています。ブレインストーミングで生成AIを活用し、他の視点が得られないか確認すること、そして上司にこまめに相談して要点に漏れがないかチェックする姿勢も大切だと実感しています。

クリティカルシンキング入門

視覚化とロジックツリーで解決力UP!

なぜ定量化と視覚化が重要なのか? 定量化して物事を考えることの大切さと必要性、またグラフを作成して視覚化することの重要性を学びました。これに加えて、抜け漏れなく課題を考えるためにロジックツリーを利用し、様々な視点から解決策を導き出す方法が有効であることも理解しました。そして、最も大切なのは、解決すべきイシューを見極めることです。注力すべき課題や目的を明確にし、その役割を踏まえて解決すべき仮説を設定し、問題解決に取り組むことが重要です。 解決策の提示には何が必要か? 解決策を提示する際には、事実や定量データに基づいて解釈を加えることが必要です。また、要素を抜け漏れなく考えるために、様々な仮説を検討し、最終的な目的からずれないように注意することが求められます。 提案とコミュニケーションの手法をどう活用する? 仕事で提案内容や課題の特定、仮説を考える際には、ロジックツリーやグラフの作成などの手法を使って考えるとよいでしょう。また、コミュニケーションを取る際に、立場によって社内外の人がどんなことを考えているのかを言語化することも効果的です。

クリティカルシンキング入門

疑問が生む戦略の新視点

この施策はどうだろう? 店舗あたりの顧客数の増加や顧客単価という切り口から、ある大手ファストフードチェーンのここ数年の施策を振り返ってみると、理にかなっている点が多く見受けられます。論理的な整理を土台に、骨太なイシュー設定とクリエイティブかつ大胆なアイデアが融合しており、その戦略性に改めて感心しました。 大手の盲点は何だろう? 一方で、どれほど経験豊富な大手企業であっても、時代の変遷に応じた論点の見落としが、直近の転売問題のような大きなトラブルにつながる可能性が示されています。この点から、多面的な視点で論点を整理する重要性について学びがありました。 本質に迫るには? 今後は、イシューそのものに疑問を持つことから始めていきたいと考えています。そもそものイシューのレイヤーが適切であるか、提示された切り口が正しいかを再検証し、「そもそも」と遡りすぎて無駄な時間の重複が生じないかを意識しながら、今向き合うべきテーマとなっているかを見定めたいと思います。同時に、より定量的な分析をもとに、イシューとしての確からしさをさらに高めていく所存です。

クリティカルシンキング入門

問いに挑む学びの瞬間

最重要な問いは何? まず、解決すべき問いを明確にすることが最も重要です。自分が直面する問題とその理由を具体的に整理し、問いとして言葉にすることで、議論の軸がぶれにくくなります。次に、論点を整理し、異なる視点から検討を重ねるとともに、正確な情報を根拠と共に収集することが求められます。そして、シンプルで分かりやすい表現を使って主張を伝えることが大切です。 会議の目的は何? 会議を進行する際も、まず解決すべき問いをはっきりとし、その目的を問いの形で参加者と事前に共有します。これにより、イシュー解決のため必要な情報の収集や、基礎知識の習得が促され、多様な視点からの議論が円滑に進む土台が整います。議論が逸れた場合は、速やかに本来の問いに立ち戻ることが重要です。 問題をどう分解? また、優先順位を考慮しながら、解決すべき問いを中心に据えて問題を分解し、必要な情報を効率よく整理することが求められます。各分野の基礎知識を最低限修得しておくことで、根拠に基づいた主張ができ、事前に共有した問いや論点を軸に、有効な結論に導くことが可能となります。
AIコーチング導線バナー

「学び」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right