データ・アナリティクス入門

データ分析の視点で課題解決を探る

データ分析で大切な視点とは? データ分析における比較の重要性を学びました。特に、比較対象をゴールに対して適切に選定することの重要性を実感しました。また、目の前にあるデータだけで判断することの危うさも理解しました。これは生存者バイアスの影響です。存在しないデータを考慮することが大切であり、今目の前にあるデータだけで課題解決になるのか、一度立ち止まって考えることの重要性を感じました。 仕事の中でのデータ活用法 私の仕事は、様々な事業部門からのデータ分析依頼に対応することです。その際、依頼されたデータそのままに100%応えるのではなく、そのデータで本質的な課題が解決されるのか、他の視点から分析する余地がないか、など多方面の視点を持つことが求められます。また、新たなデータ取得も視野に入れ、依頼主とともに問題解決に向けて進めていきます。 視点を広げる提案の予定は? 現在対応中の案件では、特定のデータソースを特定の視点から可視化していますが、これは単なる時短や作業効率改善だけではありません。事業部門の本質的な課題である収益性向上や利益改善に向けて、8月内に依頼元にヒアリングし、別の視点からのデータ活用を提案する予定です。

データ・アナリティクス入門

分解で納得!問題解決の実践

課題の本質を探る? 問題解決には明確な手順が必要です。まず、直面した課題を正確に言語化し、現状とのギャップを明らかにすることが求められます。そのため、分析を始める前に、課題とギャップの埋め方についてしっかりとすり合わせ、合意を得ることが重要となります。 合意のポイントは? 合意を形成するためには、問題を漏れなくダブりなく分解し、論理的かつ視覚的に納得感が得られる形で提示する必要があります。たとえば、「劇場の売上の減少」という課題認識のもと、大枠では単価と客数に分解できますが、そこからさらにMECEな形で掘り下げ、時系列比較の中で最も影響が大きい部分を特定することが効果的です。 収束はどう図る? また、予実比較の検証のように議論が発散しやすい場合でも、一定の手順に従えば納得感のあるロジックで改善箇所に合意が得やすくなります。具体的には、直近1年分の売上データを活用し、MECEな形で分解作業を行うことで、現状の売上改善余地がある領域を根拠をもって説明できるようになります。 改善策はどう決定? 最終的に、関係者の合意を得た上で、特定した改善領域に対するアクションプランを立案し、提案することが求められます。

戦略思考入門

歴史から学ぶ!戦略の成功と失敗分析

戦略の本質は何? 戦略という概念については、シーンによって様々な内容で語られていますが、その本質は変わらないことが重要です。この点をしっかりと意識し、自分なりに答えられるように努めていくことが大切です。 競争優位はどう実現? ビジネスの戦略として、企業あるいは事業の目的を達成するために、持続的な競争優位を確立するための構造化されたアクション・プランを心がけています。この重要な考え方を忘れないように定期的に確認し、常に意識しておくことが必要です。 提案力はどう磨く? 提案力を向上させるためには、戦略と戦術をしっかり区別し、相手が納得できるプランを提案できるように努力します。他社を参考にする際にも、戦略と戦術を可視化し分析することが重要です。企業の戦略の結果を歴史から学び、その知見を自身のビジネスに活かすことを心がけます。 成功と失敗から学ぶ? また、成功した日本企業やアメリカの企業の戦略と戦術を見直します。成功例に目を向けるだけでなく、失敗した戦略例も確認し、他者の失敗から学ぶことも重要です。その失敗例を自分のこととして捉え、どう改善できたかについて仮説を立てる訓練を進めていきます。

データ・アナリティクス入門

数字が語る業務改善のヒミツ

データの集約ってどうやる? データの比較法について、数字を集約して捉える方法、目で見て捉える方法、そして数式を用いて集約し関係性を把握する方法を学びました。普段何気なく実施していることの意味を理解することで、さらに大きな効果を得られる必要性を感じています。 代表値と散らばりの活用法は? また、データ加工のポイントとして、代表値と散らばりの両方を活用する事例を学びました。双方の特性を活かした可視化を上手く利用できれば、より具体的な分析が可能になると実感しています。 工数計算の見直しは? 業務改善の際に、工数の計算方法が一面的であったことにも気付きました。関わる人数や各作業の分析データが欠けていたため、今後はこれらの情報収集にも注力し、ビジュアル化した際の分析範囲を広げる可能性を感じています。 収集データの過不足は? さらに、すでに収集しているデータの過不足の確認も行いました。各個人が提出する情報を一元的に抽出するツールの開発は進んでいますが、項目に不足がないか確認し、もし不足があれば機能追加を実施します。一律に集まったデータに対しては、簡単なグラフ作成を通じて作業記録などの分析を行っていく予定です。

マーケティング入門

顧客のリアルニーズを引き出す秘訣を学ぶ

強みの再認識が重要? 自社のどの部分に顧客が魅力を感じているのか、自社の強みを分析することの重要性を改めて認識しました。特に新企画を立案する際に、この分析を活かしたいと思います。 ネーミングと顧客ニーズとは? 顧客ニーズを素早く的確に捉えること、そのニーズが顧客自身も認識していない場合があること、そしてネーミングの重要性について学びました。この学びをもとに、自社でもネーミングを工夫することで、商品の魅力をよりダイレクトに伝えられると感じました。 BtoBtoCのニーズ見直しが必要? また、BtoBtoCの既存販路に関しても、顧客とエンドユーザーのニーズを見直す必要性を感じています。新企画を考える際には、自社の強みを深く分析し、顧客とエンドユーザーのペインポイントを「なぜなぜ」で深掘りしていきたいと思います。 効果的なネーミング改善計画は? 具体的には、既存商品のうち魅力が十分に伝わっていない商品について、今後学ぶマーケティング手法を用いてネーミングの改善提案を行う計画です。さらに、日常生活の中でコンビニなどに足を運び、ターゲットと真のニーズについて考える習慣をつけていきたいと思います。

クリティカルシンキング入門

ピラミッドストラクチャーで論理的思考を磨く方法

ピラミッドストラクチャーの効果とは? ピラミッドストラクチャーは、論理的に物事を考える際に非常に効果的で取り入れやすいツールだと感じました。結論を導き出すためには、その根拠が必要であり、他人に伝えるためには具体例を挙げて説明することが重要です。 ビジネスシーンでの応用法は? このピラミッドストラクチャーは、結論づけや主張が求められるあらゆる場面で活用できます。例えば、会議での発言や業務フロー改善の企画時などです。特に異なる立場の人が連携する業務や課題を議論する際には、主語述語を明確にし、結論の根拠を明確にすることで、内容をきちんと伝える必要があります。 自己改善への適用事例は? 自分で結論を出したり主張する場面では、ピラミッドストラクチャーを用いて根拠の具体例まで提示した上で発言するように心がけています。また、業務改善のミーティングでは、この手法を用いて課題解決策を説明することが効果的です。さらに、各製品のマーケティングミーティングの際には、営業やマーケティングが考えた施策をピラミッドストラクチャーで分析し、具体的な根拠を明確にすることで、施策の質向上と効果の最大化を図る努力をしています。

クリティカルシンキング入門

データ分析の新たな視点を発見!

データの見方はどうなる? データの視点やグラフの表示形式が異なるだけで、見方が大きく変わることを実感しました。データ分析を行う際、まず仮説を立て、その仮説に基づいて情報を得るための切り口を考えたいと思います。逆に、他者が行ったデータ分析の結果を見るときは、その結果やグラフをそのまま信じるのではなく、見落としていることがないかを注意深く確認することを心掛けたいです。 顧客アンケートはどう見る? 業務で顧客アンケートを分析する機会が多いため、分析時に複数の観点から試してみたいです。また、サービス改善を設計するときにも、データを根拠にした設計ができるように役立てたいです。特に定性的データ、つまり自由記述のデータをどのように分析していけばよいのか、これからさらに学んでいこうと思います。 定性と定量の使い分けは? アンケート分析に関しては、事業部での週次ミーティングで報告することが多いため、その際には複数の観点からの分析結果を提示できるようにしたいです。また、定性的データの解釈に関しては、単独で分析するのではなく、定量的データと組み合わせて客観的に分析できるように努めたいと考えています。

データ・アナリティクス入門

分解で掴む業務改善のヒント

どこにボトルネック? 問題の原因を明らかにするには、業務プロセスを分解して、どの段階にボトルネックがあるかを特定することが重要だと学びました。実務ではインターネットを活用した営業を行っていないため、A/Bテストは実施しませんが、同一期間・同一条件下で検証項目を比較するという手法は、他の場面でも十分に応用できると感じました。 セグメントはどう見る? 自部門で伸び悩んでいる事業についても、まずは問題の原因究明に取り組み、適切な対応策を検討する必要があると考えています。そのため、部門内で営業セグメントごとに実績を分析し、各セグメントの問題点を洗い出した上で、具体的な対策を立案・実施し、再度分析するというサイクルを構築したいと思います。 対策はどう実施? 具体的には、3月末時点でのセグメント別業績データをもとに、前年度と当年度の成長率を比較します。低迷しているセグメントについては、問題の原因を徹底的に分析し、翌年度に向けた対策をまとめ実行します。その後は、各四半期ごとに進捗を検証し、現状を把握するとともに、必要に応じて追加の対策を講じるという業務改善の仕組みを根付かせることが目標です。

データ・アナリティクス入門

データ分析が変わる、伝える力の育て方

具体例が必要な場合は? 普段分析している視点が言語化されているため、他者にアウトプットする際に考え方を体系的に伝えることができました。しかし、数字に集約するだけでは伝わりづらいと感じ、数学的な話をする際には具体的な事例を出して伝える必要があると気付きました。 データの見せ方を工夫する また、社内で分析したデータの見せ方に関しても工夫が必要だと感じました。ただデータを見せるだけではなく、データから読み取ってほしいことや感じ取ってほしいことを意識して、最も伝わりやすい見せ方を検討する必要性を感じました。 レポート改善の重要性 さらに、社内で発行しているすべてのレポートについて、その目的や従業員に何を伝えたいかを再度見つめ直して言語化することが重要です。この作業を8月末までに行い、言語化した内容に基づいて、より伝わりやすい表現方法や見せ方の改善策を9月末までに検討し、試験的にレポートを作成して従業員からのフィードバックを得る予定です。 フィードバックを活用するには? 最後に、そのフィードバックに基づいてレポートの改善策をまとめ、内容に従って改善を行うことを10月末までに進める計画です。

データ・アナリティクス入門

仮説を超えて広がる学びの可能性

仮説はどう考える? 仮説を立てる際には、ただ闇雲に考えを巡らせるのではなく、3Cや4Pといったフレームワークを有効に活用することを学びました。その上で、仮説は複数立てることが重要であると感じています。 本当に必要なデータは? また、データ収集に関しては、まず既存のデータを検討し、不足している情報がある場合に新たなデータを集める必要があると理解しました。立てた仮説に都合の良いデータだけを選ぶと説得力が欠けるため、注意深くバランスをとることが求められます。 問題の原因は何か? さらに、業務における障害分析では、問題の解決に向けた仮説の立案が主な目的となります。現状で行っている真因分析とも連動し、What、Where、Why、Howのプロセスを意識して問題を深く掘り下げることが必要だと感じました。 実践で学ぶヒントは? 実際、日々発生する障害や事象について原因を深掘りし、複数の仮説を検討する癖をつけることで、経験を積んでいきたいと思います。ただし、データ収集の方法には工夫が必要であり、過去の事例をカテゴリー分けするなど、データを整理・加工する手法の改善が求められると考えています。

クリティカルシンキング入門

正しいイシューが未来を拓く

イシューはどう見る? 今ここで答えを出すべき問い、すなわちイシューに着目する大切さを再認識しました。正しいイシューを設定するためには、まず現状を正確に理解し、問いを残し共有・意識することが必要です。ファストフード店の事例を通して、客離れの改善策を探る際に一面的な視点ではなく、幅広い視点で検証する重要性を感じました。 課題整理はどう進む? また、日常業務においては大小さまざまな課題が常に存在しており、それぞれの課題を抽出・整理し、優先順位を付けて実行、結果を分解して分析することが業務推進に欠かせないと実感しています。今回の学びを通じて、論理的なアプローチが業務の改善に直結することを実感しました。 論理で歩む未来は? さらに、Week1から5で学んだ視点の変化や分解、イシュー・結論・根拠の整理、グラフ化といった方法論を今後の業務に積極的に取り入れ、より明快で論理的な進め方を心掛けていきたいと思います。プレゼンテーションにおいても、相手を意識した論理的で分かりやすい資料作成および説明に努め、会議では不要な話題を避け、常にイシューに意識を向けながら参加していくつもりです。

データ・アナリティクス入門

データ分析で見えた改善のヒント

目的と比較の重要性を認識 実務では無意識で実践していましたが、分析においては目的と比較が重要であることを再認識しました。「何を伝えたいのか」によってグラフの作成方法を考える、という視点は今後意識していきたいです。また、分析において要素に分解することは大切ですが、目的が明確でないと細かく分解すること自体が目的化してしまう可能性があるため、注意したいところです。 分析結果を施策にどう活かす? 弊社サービスの利用率や更新率を高める施策を考える上で、ユーザーデータの分析における学びを活用したいと思います。具体的には、「利用率を高める」ことと「更新率を高める」ことという目的に分けて、ユーザーの利用データや解約時アンケートなどの各種データから必要な項目を抽出し、分析します。 チームとの効果的な議論をどう行う? 毎週のチームメンバーとのミーティングでは、学んだことをメンバーにアウトプットし、チーム全体の視座を揃えるように努めます。特に、「利用率を高める」「更新率を高める」ためのデータ分析をメンバーと協力して行い、効果的な施策を導き出せるよう、有意義なディスカッションを重ねていきたいです。

「分析 × 改善」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right