データ・アナリティクス入門

明確な結論が導く成長

解決すべき問題は? 当日演習中、解決したい問題を明確にすることが、自分の実務において不足していた点であると実感しました。結論のイメージを持つことで、分析すべき項目の選定やアウトプット時のグラフ選択など、躓きやすい箇所の解決につながると感じました。 問題点の見極めは? 演習では、全体から問題点の箇所に焦点を絞っていくプロセスが示され、実践経験と重なる部分が多くありました。実務において、これまで問題解決の各ステップの「どこ」に位置しているかを意識していなかったため、今回学んだプロセスを通して、自分の現在の位置を客観的に捉えることの重要性を再認識しました。 グラフ選択はどうする? また、グラフの選び方に関しては、まずその種類や役割(たとえば、差異を伝える、比率を示すなど)を理解することが必要です。仮説や伝えたいメッセージを明確にした上で、直感的にピンとくるグラフを選ぶこと、そして伝える相手の好みや傾向を把握しつつ、複数のグラフを比較検討するアプローチが有効だと感じました。 どう改善するの? 実務を振り返る中で、学んだステップに照らして「できていること」と「改善できること」があると実感しました。全てを完璧に実行するのは難しいですが、ひとまず一度しっかりと振り返り、今後の業務遂行の効率化に活かしていきたいと考えています。

クリティカルシンキング入門

適切な問いが導くデータ活用術

適切な問いはなぜ? 今週の学びを通じて、問題解決における「適切な問いの設定」の重要性を改めて認識しました。明確に定義された「解決すべき課題」が、効果的な分析と解決策の導出につながることを学びました。また、データの適切な加工と分析によって情報を構造化し、視覚的に明確な形で提示する手法の有用性を実感しました。さらに、データの図表化が分析の精度向上に寄与することを体感し、実務での具体的な活用方法を見出すことができました。 現職での実践は? 「問いを立てる力」と「データの分析手法」を現職の業務改善プロジェクトで実践していきます。業務フローの課題特定に際しては、チームメンバーと「本質的な課題」を共有し、分析を深めるプロセスを確立しようと考えています。また、提案資料作成においてはデータの視覚化を通じて説得力を高め、経営層の的確な意思決定をサポートしたいと思います。 解決力高める秘訣は? 課題解決力を高めるため、以下の取り組みを実践します。毎週の振り返りで課題を整理し、本質的な問いを設定し、分析結果を図表化してチームで共有し、活発な意見交換を行います。わかりやすく論理的な資料作成を心がけ、改善を重ねます。また、学んだ内容を繰り返し実践し、定期的な振り返りで成長を目指します。これらの取り組みを通じて、実務での課題解決力を高めていきたいと考えています。

戦略思考入門

フレームワークで見える業務改善の秘訣

関係者間のゴール共有は必要か? ひとつの課題に対しても、関係者それぞれがスタートの時点でゴールやプロセスを共有しておくことによって、方向性を見失わずに戦略を立案できます。しかし、経験値が高い人や声が大きい人に引っ張られることはよくあります。そのため、フレームワークを使って課題や情報を分析し、優先順位や重要度を整理することが重要だと思いました。 業務でフレームワークは活用できてる? 現在の業務では、中期計画を策定する際にSWOT分析やPEST分析を使用していますが、実際に課題を十分に理解し洗い出せているか自信がありません。上司の出す結果をそのまま受け止める傾向があります。今回の学習で得た具体的な事例を参考に、業務に落とし込んでみたいです。特にカスタマーサービスにおいては、商品や営業に直接関与していないため、サービス業におけるフレームワークの効果的な活用法について考えていきたいです。 業界分析は計画にどう結びつく? 業界の分析や自社の強み・弱みを踏まえて、優先的に強化すべき領域や必要な対応を整理し、進めてみます。既存の計画についてもフレームワークを適用し、具体的な改善点を見つけ出し、現在の計画にどのように結びつくかを確認して、理解を深めていきたいと思います。また、本講座を通じて他の業界の視点を学び、自分の視野を広げたいと考えています。

データ・アナリティクス入門

問題解決への新しいアプローチを発見

問題解決の第一歩はどこ? 問題解決の4つのプロセスを学びました。起きたことをwhat・where・why・howに分けて考えると、普段ではwhereやwhyについては何となく意識しているものの、その「何となく」から思いつきでhowに至ってしまうことが多いと感じました。whatについてはほとんど考えられていないように思います。また、現状とあるべき姿のギャップを言葉にしようとしても、うまく出てこないことに気づかされました。これは自分がいかに漠然とした考えで問題に向き合っていたかの証拠だと感じました。 定量的分析を習慣化すべき? 目の前のことに一喜一憂せず、日々の問題には定量的な分析を行うことを習慣づけたいと思います。たとえば、キャンペーンの商品分析やチームメンバーの業務量の適正化なども、定量的に分解して考えると有効です。私たちの基本業務である当事者トラブルの解決にも、この方法が応用できるかもしれません。 ギャップをどう埋める? 最初に取り組むべきは、現状とあるべき姿、またはありたい姿が個々人で漠然としてまとまっていない点の改善です。そのギャップを埋めることが大切です。問題解決の話し合いの場ではまずwhatを意識し、周囲との合意を図ることが重要です。ここを丁寧に行った後に、物事の分解・整理を学んだ通りに進めていきたいと思います。

データ・アナリティクス入門

仮説が導く実践の分析術

目的設定は正しい? データ分析は、単に比較するだけではなく、まず目的を明確にし、自分なりに仮説を立てるところから始まります。仮説に基づいて分析作業を進め、その結果から具体的な示唆を得る一連の流れを意識することが重要です。 比較条件は合ってる? また、比較対象とする対象の条件を揃えることが不可欠です。この前提が誤っていると、適切な分析が行えなくなるため、比較対象に問題がないかどうかも注意深く判断する必要があります。 採用現場でどう役立つ? 採用活動の現場では、以下のような場面でデータ分析が役立つと考えています。まず、エージェントや媒体の成果を基にした母集団の形成。次に、面接の実施率や内定承諾率など、候補者起因の歩留まり改善。そして自社の採用活動全体のパフォーマンス管理や改善点の発見、さらには新たなサービス導入の検討時にも活用できるでしょう。 集計方法に再考は? 現状、応募数や内定数など各選考フェーズでの実数や展開率の集計は行っていますが、そのデータの取り方が最適かどうか、また他により良い集計方法がないか再検討する余地があると感じています。さらに、定量的な成果を示すことで、他部門への説得材料とする狙いもあり、現状の課題、例えば選考のリードタイムの短縮などについて具体的に提示し、改善に向けた会議を進めていきたいと考えています。

マーケティング入門

自分発見!学びと挑戦の記録

イノベーションで何が変わる? 商品の売れる・売れないを考える際に、イノベーションの普及要件というマーケティングフレームワークを学びました。このフレームワークは、比較優位、適合性、わかりやすさ、使用可能性、可視性の5つの視点で商品を分析するものです。ある成功事例から、わかりやすいキャッチコピーや効果的なネーミングが、実際の商品価値を届ける上で非常に重要であると実感しました。 競合の罠はどう防ぐ? また、競合ばかりに意識を向けすぎる差別化の罠にも注意する必要があると学びました。万人向けの商品展開に固執せず、市場を細分化し、ニーズを深掘りすることで、顧客の価値観に沿った商品の提供が実現できると考えています。 どう伝えれば響く? さらに、イベントのタイトルやキャッチコピー、内容を企画する際には、イノベーションの普及要件を意識し、ターゲットにしっかりと伝えたい価値や訴求点が届くよう工夫していきたいと感じました。特に、比較優位性や分かりやすさの点については、直近のイベントで課題を実感したばかりなので、検証を重ねながらより魅力的に伝わる方法を追求したいと思います。 改善策はどう見つかる? 施策ごとにこのフレームワークを振り返り、学んだ視点を活かしながら、ネット販売などにおいて売れていない原因を分析し、改善策を考察していくつもりです。

データ・アナリティクス入門

数値と論理で見える理想の未来

どの方法で解決? 問題解決には大きく2つのアプローチがあると感じています。1つは、あるべき姿と現状のギャップを埋め、正しい状況に戻すための方法です。もう1つは、未来に向けたありたい姿と現状のギャップを解消し、望む状態に到達するための方法です。どちらの場合も、目指す状態と現状を定量的に示すことが非常に重要です。 分析手法は何? そのため、ロジックツリーやMECEといった分析手法が有効だと考えています。これらのツールを使うことで、問題やデータを細かく分解し、整理された形で把握することが可能になります。 顧客データ整理はどう進む? 具体的には、現在保有している顧客データに含まれる情報を、国や契約の条件などの観点から整理する必要があります。これまで「顧客データ」とひとまとめにされていた部分を、ロジックツリーを用いて項目ごとに分解し、各顧客についてどのような情報が含まれているのかを明確にすることが求められます。また、業務における理想の状態と現状のギャップについても、数値などの定量的な指標を用いて示すことが大切だと感じました。 手法活用の可能性は? このように、定量的な情報の整理と、体系的な分析手法の活用が、問題解決を実現する上で不可欠であると再認識しました。今後も、これらの手法を業務の改善に積極的に取り入れていきたいと思います。

クリティカルシンキング入門

データの切り口に迷ったら実践する方法

データ分析の切り口選びで何が見える? データの分け方によっては、見えてくる結果が異なることがあります。例えば、分解する切り口を誤ると、真の原因が発見できなくなることがあります。このとき、分解する切り口は「層別分解」「変数分解」「プロセス分解」の3つが有用です。これらの手法に慣れることが重要なので、自分で考えながら手を動かすことが大切です。 真の原因を探る鍵はどこに? 問題解決において真の原因を探る際には、データ分析を行いますが、その際には分解の切り口が誤っていないかどうかを確認する必要があります。また、お客様へのヒアリングの中でMECEおよび5W1Hを意識することで、真の原因や現状を把握する際に役立ちます。 問題解決にMECEはどう活用する? 問題の特定と分析において、問題を構成する要素を重複なく漏れなく分解することで全体像を把握しやすくなり、また問題の原因を特定する際に全ての可能性を考慮して整理することができます。業務プロセスの改善では、業務フローをMECEに分解することで効率化の余地を明確にします。データ分析とレポーティングでも、データをMECEに整理することで分析の精度を高め、クライアントにわかりやすく伝えることができます。加えて、プロジェクト管理ではプロジェクトのタスクをMECEに分解し、抜け漏れなく管理します。

データ・アナリティクス入門

実践で磨く、A/Bテストの秘訣

情報伝達の大切さは? 今回の学びを通して、情報が漏れなく重複なく伝わることの大切さを改めて認識しました。目的を見失わず、必要なポイントを抑えることの重要性が意識されました。 A/Bテストの効果は? 特に、A/Bテストの活用は検証のしやすさや結果の共有において分かりやすい手法であると感じました。一定の制限をかけ、絞り込むことで方向性を見失わずに進める工夫にも気づきました。 広告運用のコツは? 実務でgoogle広告を活用する中で、A/Bテストの形式で構成され、AIが複数のセンテンスを組み合わせることで広告の最適化を図る仕組みを再認識しました。小さな変更を繰り返すアプローチは、実際にすぐ活用できる効果的な方法だと実感しています。 プロモーションはどう? また、運用しているプロモーションに関しては、早速実践に移し、チーム内で共有して理解を深めることが重要だと感じました。取得したデータをもとに分析し、意見を擦り合わせることで、より精度の高い施策へと進化させていく予定です。 チームでの改善は? 今後は、A/Bテストの手法をさらに高度なものにグレードアップすることも視野に入れています。ただし、個々のスキルに偏ることなく、チーム全体でアウトプットの場を設け、ディスカッションを重ねるよう取り組んでいきたいと考えています。

データ・アナリティクス入門

実践力が輝く!学びの現場改革

3Cの分析方法は? 3Cは、事業環境を多面的に捉えるためのフレームワークです。Customer(市場・顧客)、Competitor(競合)、Company(自社)の3つの視点から状況を分析し、事業戦略を立案する際の参考にします。 4Pで何を判断? 一方、4Pは3Cの自社部分をより詳細に検討するためのツールとなります。Product(製品)、Price(価格)、Place(場所)、Promotion(プロモーション)の4つの要素を軸に、どのようにサービスの良さを顧客に訴求するかを分析するために活用されます。 現場の課題は? 観光客にとっては、免税手続きの所要時間が短い中で対面式のアンケートや、時間を要するインタビューは取り組みにくい方法と言えるでしょう。また、クレームが発生した際には、最低でも1名の通訳が苦情対応のため常駐しなければならず、現場では実質的に人員が減る状況となります。 改善策はどうする? これまでのアンケート調査は一度のみ実施しており、対面で紙に選択肢を記入していただく方法にはお客様に抵抗があると感じました。今後はデジタル形式で「後ほど実施していただいても構いません」と伝え、アンケートに協力していただいた方々には次回利用可能なショッピングクーポンを提供することで、対応の改善を図ろうと考えています。

戦略思考入門

異なる視点が生む成長の物語

個性の違いを感じる? 同じ職場で同じ業務に携わっていても、個々の考え方や向いている方向が異なることを学びました。異なる見解を否定するのではなく、別の視点を取り入れることでチーム全体の視野が広がり、より質の高いアウトプットが期待できると実感しています。 分析で全体を見直す? また、各種フレームワークを用いた分析を通して、事業全体や自分自身の業務を大局的に見直すことができると感じました。定期的にこれらの手法を実践することで、プロジェクト全体や自身の状況を整理し、効果的な改善・提案に結びつけたいと考えています。 共有で理解深める? さらに、普段当たり前と捉えている業務の内容も、言語化や図表化して共有することにより、チーム全体の目的意識を維持する手段になると確信しています。施策を提案する際には、フレームワークを活用して背景・根拠・想定される効果を明確にし、ストーリー性を持たせた説得力のあるアプローチを心がけたいと思います。 説得力の根拠は? チームメンバーとのコミュニケーションにおいては、分析結果を交えることで自身の主張に説得力が増すと感じています。業務推進においては、感覚だけに頼らず、3C分析やSWOT分析などを参考にしながら、合理的な判断とその決断が全体に与える影響を考慮することを意識していきたいと考えています。

デザイン思考入門

会話で掘り起こす本音の真実

定性分析の意義は何? 定性分析という言葉は以前から耳にしていましたが、具体的な内容についてはあまり理解していなかったため、普段使っている手法ということもあり、大まかなイメージは持っていました。日常的に顧客と会話する中で、提供しているサービスに対する意見や不満を雑談の中からヒアリングし、複数の顧客の声を集めることで共通の改善ポイントを見つけ出してきました。フレームワーク化はしていなかったため、これを機に試してみることにしました。 顧客の反応はどう? また、ある顧客で認識した課題を、別の顧客にも「こういった課題はありませんか」と確認することがあります。その結果、多くの方から「あ、そうだね」と言われ、潜在的な問題を掘り起こせたような気がする反面、半ば無理やりに認識させたのではないかと感じることもあり、共感フェーズの難しさを改めて実感しました。 対応策は進むか? さらに、特定の条件下にある利用者の特定シチュエーションでの課題に焦点を当てる重要性は理解しているものの、実際にその課題に対して具体的な対応策を講じるまでには至っていません。対象となるケースが想定以上に少ないため、コストメリット的にも実施判断にまで至らないのが現状です。今後は、次のフェーズで小規模なテストなどを通じ、解決策を模索していければと考えています。

「分析 × 改善」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right