データ・アナリティクス入門

データ活用の第一歩:仮説と比較軸の重要性

データ活用の目的設定はどうする? データ分析やデータ活用というキーワードは頻繁に耳にしますが、私はこれを「存在するデータを何か有効活用する方法」と考えていました。しかし、この考えではまず目的が定まっておらず、仮説もないため、何を軸にして比較するかができません。まずは仮説や比較軸を含めた目的をはっきりとさせてから取り組む必要があります。 自社内営業改善の具体戦略 私が考えたデータ活用の具体例としては、自社内の営業活動の改善と担当顧客へのアプローチの2点があります。 顧客アプローチにどう活かす? 自社内では、自身のチームの営業マネジメント改善にデータを活用します。具体的には、YoY(前年比)分析や受注傾向分析(品目、打率)を行います。 ヒアリングと提案骨子の重要性 一方、担当顧客向けには、データ分析に関する案件のヒアリングおよび提案骨子の作成を行います。この際、顧客が持つ仮説と比較軸のヒアリングを行い、それが具体的でない場合には顧客に提言を行います。仮説や軸が定まっている際には、それを提案骨子に落とし込み、定まっていない場合は定めるためのアプローチを検討します。 データ活用の第一歩は? このように、目的を明確にし、比較軸や仮説を定めることがデータ活用の第一歩であると実感しました。

データ・アナリティクス入門

実践で磨く問題解決力

効果検証はどうする? 問題解決のフレームワーク(What, Where, Why, How)に沿って思考を進めることで、ただ思いつきで施策を導入するのではなく、実施した施策の効果をきちんと検証できます。また、このフレームワークを活用しA/Bテストを実施することで、もし施策がうまくいかなくても別のアプローチを試し、再度検証を重ねることが可能です。こうした手法により、より効果的な解決策を見出し、継続的な改善へとつなげることができます。 問題の原因は? グループ店舗においては、業績の高い店舗と低い店舗との違いを明確にすることが重要です。たとえば、低実績の店舗では、顧客への働きかけが不足しているのか、またはスタッフのスキルに問題があるのかといった原因を順を追って分析することで、真の問題点を特定できます。このプロセスにより、場当たり的な対応に終始せず、効果的な解決策を集中的に立案・実行することが可能になります。 実務で活かす方法は? 私は現在、グループ店舗の実績向上を目指し、これまで学んだ問題解決のフレームワークを実務で活用しています。そのため、今月上旬を目標に各店舗の問題点を分析し、仮説を立てた上で対応策を検討します。そして、来年度に向けた対策スケジュールの策定と実行に向けた準備を進めていく予定です。

データ・アナリティクス入門

多角的視点で挑む学びの挑戦

プロセス分解って何? プロセスを分解するという観点を学びました。3Cや4Pのフレームワークを用いて、どの切り口で分析するかまでは考えることができたものの、その視点から仮説を立てる際に、設問の誘導がなければ行き詰まる可能性があると感じました。最終的には、4Pでプロモーション方法に着目し、3Cで顧客視点から行動パターンやプロセスを考えるという方法を組み合わせるアプローチを理解しました。 学びは販促にどう活かす? マーケティングの面では、従来の主要な事業である顧客設計品の生産・販売に加え、近年では新商品の市場投入が進んでいるため、学んだ考え方を販促活動に活用できると感じました。どの業界のどの顧客にどのようにアプローチし、望ましい結果を得るかを考える際に、今回の手法が大いに役立つと思います。 計画検証はどうすべき? また、投資検討の面でも、現状は確定した案件に基づいて投資判断がなされていますが、今後は未確定案件に対する投資検討にも学んだ手法を生かし、効果やリスクの検証を行っていけると考えています。さらに、担当者との定期的な打ち合わせで共有された活動計画について、計画が効果的に進んでいるか、もし計画通りに進んでいなければその原因や改善策を検討する際にも、今回学んだアプローチを活用していきたいと思います。

アカウンティング入門

振り返りが生む分析力と発見の旅

指標分析の重要性を理解する 売上高、営業利益、経常利益、当期純利益といった指標の順番で分析することの重要性を学びました。分析に際しては、比較や対比を用いて傾向の変化や大きな相違点を見出すことが必要です。 説明を丁寧にする意識を高める ケーススタディの設問に答える際に感じたこととして、コアな部分は捉えられているものの、顧客心理の説明においては、もう少し丁寧に説明する必要があると気づきました。これは、言葉足らずな部分を丁寧にカバーすることを軽視していた結果であり、もっと丁寧に説明する姿勢が重要だと実感しました。今後は、説明の出口部分から意識をより高めていこうと思います。 提供価値の分析と強化点は? 自社の提供する価値と競合他社の価値をP/Lから分析し、それによって自社が強化したい点や改善すべき点を考えてみます。さらに、自分が関わる事業の商品やプロモーションで今後どのように注力していくかを検討したいと思っています。 数字の定着と今後の計画 自社のP/Lデータはすでに確認しましたが、数字を頭に定着させるために直近2年分と今期の予測を自分でまとめ、空で言えるようにしてみようと思います。競合他社のデータについては、今後数週間で確認する予定です。そして、推薦いただいた本もぜひ読みたいと思っています。

データ・アナリティクス入門

数字を超える、比較の妙技

比較と目的はどう考える? 分析において、「比較」と「目的への立ち返り」の大切さを改めて感じました。何かしらの数値をグラフ化して報告するだけでは、かえって分析した気分になってしまい、実際は単なる数字の結果報告に過ぎなかったと認識しています。今後は、目の前の数字だけではなく、適切な比較対象を設定し、分析結果としてしっかり報告できるよう努めたいと考えています。 上司の反応はなぜ? 直近の業務では、状況報告を上司に行った際、好意的な反応を得られず、簡単に取得できる情報だけに依存し、見栄えの良いグラフや表を作成するだけの報告になっていたことを痛感しました。単に数値を並べるだけでなく、それぞれの情報をきちんと比較し、その内容から次の対応や施策を検討できるような報告に改善する必要性を感じています。 次の一手はどうする? そのため、今後の取り組みとして以下の点を意識していきます。 まず、分析の目的を再度明確にすること。 次に、比較する項目や内容について、上司の意見や生成AIのサポートを活用しながら見直しを行うこと。 さらに、定量的な分析だけでなく、定性的な分析も取り入れられるよう検討を進めること。 そして、最終的には目的に沿った次の対応策が検討できるような報告をまとめることを目標とします。

データ・アナリティクス入門

目的再確認で拓く未来

なぜ目的は大切? 分析とは、比較を通して物事を評価するプロセスです。まず、データ収集や具体的な分析を始める前に、はっきりとした目的を設定することが不可欠です。目的が定まらない分析は、結果として次の行動に結びつかず、単なる数字遊びになってしまうリスクがあります。 どのように対象を選ぶ? そのため、目的を明確にし、適切な対象を選ぶとともに、多角的な観点から正しく比較することが大切だと考えます。データ分析に入る前に一度立ち止まり、目的に立ち返る余裕を持つことが、成功への第一歩となります。 どのように傾向を見る? 具体的には、顧客の属性データやアンケート結果から傾向を読み取り、次月以降の施策に役立てています。また、自身の働き方に関しても、どの業務にどれほどの時間を費やしているかを他者と比較し、業務効率の向上を図っています。 どうやって振り返る? このため、毎週金曜日に10~15分間の業務棚卸しの時間を設け、週次および月次での振り返りを実施しています。さらに、1on1などの機会を通じて、業務時間の使い方について他者から意見を聴取し、比較することで、より実践的な改善策を模索しています。一方で、対顧客の分析に関しては、常に目的を再確認し、施策ありきの分析にならないよう注意を払っています。

アカウンティング入門

半間比が明かす企業戦略の秘密

半間比の効果は? 今週の学習では、PL(損益計算書)の半間比の見方を通して、各店舗や企業がどのように価値を創造しているかを理解できた点が非常に印象的でした。具体的には、ある業態では高コストながら高単価を狙い、また別の業態では気軽さを武器に購買数を増やすという違いがあり、半間比を比較することで経営方針の違いが明確になりました。数字の背後にある戦略を読み取る視点を身につけられたことが、今回の大きな収穫です。 決算書の読み方は? この学びを自分の仕事に活かすためには、まず自社の決算書やPLを正確に読み解く力を養うことが重要だと感じました。さらに、競合他社の決算書や業績資料と比較することで、自社の強みや改善点がより明確になると考えます。また、新聞や経済誌に掲載されている企業の業績記事に接する際も、PLや半間比の視点を持つことで内容の理解が深まり、現実のビジネスへの洞察が広がると実感しました。 行動に移すには? 実際の行動に移すため、まずは日常的に新聞などの経済情報に触れ、気になる企業や話題に上がる企業について、試算表やPLなどの財務情報を毎週調べるようにしていきたいと思います。こうした継続的な情報収集と分析の習慣を通して、財務の見方や経営判断に必要な視点を少しずつ身につけていけると期待しています。

クリティカルシンキング入門

イシューを極める学びの旅

どのイシューに注目? 今回の学びで、フォーカスすべきイシューを正しく把握する重要性を再認識することができました。どのイシューに注力すべきか、そしてそのために何から取り組むべきかを明確にしなければ、成果に大きな差が生まれるという点は、今後の活動において大変参考になります。特に、ある有名ファーストフードチェーンの事例は、イシューの捉え方を考える上で非常に示唆に富んでいました。 エリアプランはどう整理? また、四半期、半期、年間のエリアプラン作成においても、この考え方は大いに役立つと感じています。エリアの現状や課題を正しく把握し、優先順位をつけること、さらには複数の解決策のオプションを検討することが重要です。顧客の反応を継続的に分析して、アクションプランを再構築し、必要に応じて追加検討を行う際にも、この学びは非常に活用できると考えています。 市場を多角的に見る? さらに、様々な角度から市場を分析することで、ターゲットとするイシューをより正確に把握する努力を続けたいと思います。仮説を立て、その検証結果をもとに改善を重ねるプロセスを通して、本当に必要な知識を身につけることが目標です。また、チーム内で得た知見を共有し、議論することで、さらに理解を深めることができると確信しています。

データ・アナリティクス入門

要素分解が開く学びの扉

分解と分析はどうする? 分析を行う際は、まず対象を要素に分解することが重要です。ロジックツリーやMECEの考え方を活用し、問題解決のステップとしてWhat、Where、Why、Howに分けることで、あるべき姿と現状、そして現状と理想のギャップを正確に把握できるよう心がけています。 店舗のギャップは? また、実務の現場では、宿泊客のデータ比較や社内の研修で、グループ内の各店舗のありたい姿を設定し、現状とのギャップを店舗ごとに分析する取り組みが行われています。このような分析により、各店舗の改善点が明確になり、実効性のある対策が立てられるようになっています。 研修資料はどう整える? さらに、新入社員向けの研修資料作成においてもMECEを意識し、内容を整理することが求められています。現状、社内向けの資料が十分に整備されていないため、今回学んだことを活用して、より実用的で分かりやすい資料作りに努めています。 口コミ低評価をどう克服? 口コミ評価が低い店舗を訪問する場合、現状とあるべき姿のギャップを3つ以上洗い出し、具体的な改善点を見つけることが求められます。初回の動画視聴だけでは本質を理解しきれないため、何度も視聴しながら自分の手でメモを取ることで、理解と記憶の定着を図っています。

データ・アナリティクス入門

分析で得た洞察を行動に変える方法

売上予測の計画をどう立てる? 売上予測においては、過去の事例や他社、海外の事例と比較しながら計画を立てることが重要です。実績が更新されるたびにその計画との比較を通じて事業の進捗を評価し、改善策を議論しています。このことから、「分析は比較なり」という定義はやはり真理だと感じています。また、扱うデータの理解を深め、その知見をステークホルダーと共有するためには、アウトプットの整理と見せ方を適切に選ぶ必要があります。 分析計画表はどのように工夫する? 分析を進める際には、毎回分析計画表を記載し、目的に合わせた分析手法を選択して言語化した上で作業を進めています。しかし、どのデータをどのように加工して用いるかにはあまり触れていないことが多いと感じました。そのため、テンプレートを見直し、自分以外の人がその分析の思考プロセスを理解しやすくするよう工夫が必要です。 新たなデータ分析のアプローチは? 具体的には、現在のテンプレートでは実際に分析に用いたものしか記載されておらず、選択可能なデータの種類とその選択理由、分析手法の採用理由を明確化するような構成に変更する予定です。新たなデータを分析する場合、そのデータの特性や限界を適切に確認し、分析結果とともに共有することが重要だと考えています。

データ・アナリティクス入門

プロセス分解で見つけたヒント

なぜ分解して考える? プロセスを分解して問題の本質に迫る手法について、非常に分かりやすい事例から学ぶことができました。特に、採用プロセスの一部である中途採用面談や、顧客への提案における在庫差異の問題解決に、このアプローチを活用できると感じています。また、ABテストにおいては、条件をできる限り同一とし、検証範囲を絞るための仮説設定が重要である点も再認識しました。 採用面談、何が問題? まず、中途採用面談に関しては、自身が関与する採用活動において、プロセスのどの部分で問題が発生しているのかを明確にするため、面談調整に要する日数と採用結果の情報を人事部から収集することを検討しています。この情報をもとに、面談調整に時間がかかる原因を特定し、改善策を提言することで、採用率の向上を図ることができると考えています。 在庫の差異、どう解決? 次に、顧客への提案、特にシステム間の在庫差異に関する課題解決では、既に現状の業務プロセス分析は実施していますが、課題が発生しているプロセスの粒度が細かすぎるため、より単純化した形で説明する必要性を感じました。問題となりうる箇所を明示した上で、システム改善または運用プロセスの変更のいずれかを提案し、顧客にとって最適な解決策を提示していく考えです。

データ・アナリティクス入門

プロの視点で分析スキルを業務に活かす方法

フレームワークの重要性を実感 前期の戦略入門でも感じたことだが、まずはフレームワークや型にはめて物事を考えることの重要性を改めて実感した。分析においてはWhat, Where, Why, Howのステップが基本であり、日々の業務においてもこの点を意識して進める必要があると強く感じた。今週の演習を通じて、これまでの経験や感覚に頼っていたことを再認識したので、今後の学習期間中はこの点を意識して取り組んでいきたい。 大幅に下回る結果を改善するには? 現在の業務において、前年以上の売り上げを上げている施設や地域がある一方、前年を大幅に下回る施設や地域も存在する。このような場合において、問題や原因を特定し、その要因を探り、どのように改善に繋げていけるかを追求するために、今週の学びを早速活かしていきたいと考えている。 MECEを使った分析の取り組み 今週の学びの一つであるフレームワークを自分のものにするために、現状の業務に適用してみることにした。週次で分析を進めている特定の地域がなぜ前年を下回る結果となっているのかを題材に、MECE(Mutually Exclusive, Collectively Exhaustive)を意識しながらロジックツリーを活用して分析していきたい。

「分析 × 改善」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right