戦略思考入門

戦略フレームワークで広がる視野の旅

どのフレームワークを使う? 戦略を考える際には、3C、PEST、SWOT、バリューチェーンを用いることが、有効であると感じました。特に、チームで取り組むときには、それぞれのメンバーの主張の背景を理解し、共通の前提や目標を定めることが重要です。また、タスクを分担することにはリスクも伴うことに注意が必要です。 戦略の課題は? 印象に残ったのは、分析自体は知っていたり、部分的に活用した経験もあったものの、しっかりと戦略にまで落とし込めていないと感じた点です。理由としては、戦略に取り組む時間を十分に確保できていないことや、適切な対策を引き出すための知識が不足していることが挙げられます。これを改善するためには、まず思考する時間を確保すること、そして日常的に成功事例を蓄積することを心掛けたいと思います。 視野をどう広げる? また、今回学んだフレームワークを使い、自分の担当しているサービスや所属する部門、さらには会社全体といったさまざまな観点から考えてみることが、自分の視野を広げる良い練習になると感じました。まずは、現在の担当のレベルで、今回紹介された4つの分析を実施し、その結果をもとに気付きをまとめ、フレームワーク活用の際の注意点も振り返られるようにしたいと考えています。

データ・アナリティクス入門

ひたむき仮説で未来を創る

仮説設定の意義は? 講座を受講して、データ分析のテクニックを学ぶことができました。しかし、分析そのものはAIに任せることが可能であり、本当に人間に必要とされるのは、データ分析の目的を明確にし、適切な仮説を設定する能力だと実感しました。正解に飛びついてしまいがちな思考停止の傾向を反省し、より良い仮説を見出すために、あきらめずトライ&エラーを重ねていきたいと考えています。また、当たり前を疑う力や、本質的な課題を見極める力、さらには分類のスキルを養うことの重要性も感じました。これらは次週以降や実践の場で活用していきたいと思います。 内部監査の視点はどう? 私は内部監査を担当しており、より鋭く価値ある提案ができるよう、今後はさらに良い仮説を立てる努力を重ねるつもりです。自分の考えや視点の狭さに日々反省しながら、「この事実から何が言えるのか」という問いに徹底して向き合っています。 現場改善はどうする? また、狭い視点に陥らないために、マネジメント視点やクリティカルシンキングを意識するとともに、現場の状況を十分に踏まえた提案ができるよう努めています。具体的には、何が問題なのか、どうすれば現場が改善されるのかをデータを裏付けに、しっかりと整理して提案していきたいと考えています。

アカウンティング入門

「会社の健康状態を見抜く方法を学んで」

B/Sの構成を理解するには? B/Sの構成がどうできているのか、得たお金の使い道などが理解できました。資産、負債、純資産が記載されており、「会社の健康状態」という言葉がすごくしっくりきました。「見方」として、流動資産、固定資産、流動負債、固定負債、純資産の5ブロックに分かれているバランスが重要で、私がB/Sから読み取りたい「相手方の経営状況」がここから読み取れると理解しました。細かい部分は理解しきれていない所も多く、次週の学習で理解を深める予定です。 リスクの程度をどう知る? WEBから入手できる情報でまずは負債の情報を見て、そのリスクの程度を知ろうと考えました。また、自社の情報を見て、他社との比較を行い違いがどこにあるのか、また自社のお金の使い道を把握することで、今後どうしていくべきかの仮説を立ててみようと考えました。 自社と他社の比較分析 具体的には、次のことを行いたいです。まず、WEBからの情報を入手し分析すること。そして、自社情報の分析も行います。リスクの程度を知り、自社と他社との相違点を見つけ、改善ポイントを見つけて改善案を考えることが重要です。最後に、この結果を経理部門と共有し、B/Sの読み方や考え方が間違えていないかを確認する機会を準備します。

クリティカルシンキング入門

多角的視点で商談獲得数を劇的改善する方法

経験に頼りすぎてない? 自分がいかに短絡的に、自分の経験に頼って物事を考えているかを改めて認識しました。物事を考える際には、多くの「切り方」から考え、偏りがないかを常にチェックしていきたいと思います。 具体的には、次のような点に役立てたいと考えています: - 商談獲得数減少の分析と対策 - インサイドセールスの売上貢献が可視化されていない課題の原因洗い出しと対策の発案 - インサイドセールス組織のターゲット顧客や対象プロダクトのフォーカス方針の策定 - 個々のプロダクトの「勝てる市場」を定義するための活用 広い視野を持つには? まず、社内の様々な視点と視座(各関連部署や役職、ジュニアからシニアまで)、さらには社外や市場の視野を広げて思考する習慣をつけていきたいと思います。また、課題の洗い出しにおいては、5W1Hといった複数の切り口を考え、できるだけ多くの項目を洗い出すための反復訓練を行っていきます。 フィードバックをどう活かす? 次に、洗い出した課題を上司や同僚に説明し、フィードバックをもらうことで、伝える力と傾聴力を養っていきたいと思います。毎週1回は課題提起を行い、FY24中に一つ、組織内の大きな課題に対する対策を提案することを目標にします。

クリティカルシンキング入門

多角的思考で未来を切り拓く学び

自分の思考はどうなる? 自分や他者にはそれぞれ独自の思考パターンがあることを意識しています。集団内でもその傾向は見られ、思い込みが働くことがあるため、物事を多角的に捉える姿勢が大切だと実感しました。 現状をどう把握する? また、現状の課題(イシュー)を明確に特定し、今自分が何をすべきかを把握することも重要です。事業戦略や市場分析を行う際には、思い込みに陥らないよう、他者と意見を交わしながら壁打ちを行うなど、常に「本当にこれで良いのか」と問い続ける姿勢が求められます。 重要課題は何だろ? さらに、重要な課題を特定し、その優先順位に基づいて適切な対策を講じることが、成果に直結すると感じています。加えて、資料作成においては、図表やフォント、文字色といった視覚的要素を効果的に活用し、誰にとっても分かりやすい資料となるよう工夫する必要があると学びました。 チームの意識は? 最後に、チーム内で自分の業務への当てはめを共有し、全体で意識を統一することで現場の改善だけでなく、後進の育成にもつなげる考え方が今後も重要だと感じています。定期的に四半期や半期ごとの振り返りを行い、活動の効果を共有・確認する取り組みを継続することも、業務の成長に寄与すると確信しています。

クリティカルシンキング入門

分解でひらける!業務改善の秘訣

分解の意義は? 物事を分解する重要性について学び、状況の解像度が上がり、どこに問題が潜んでいるかが見えやすくなることを実感しました。問題解決にあたり、全体をそのまま捉えるのではなく、各部分に分けて考えることで、より明確な対策が立てられると感じました。 データ分類は何で? 特に、データを仮説をもって分類し、どの切り口で分ければ自分が知りたい情報が明確になるのかを考えるプロセスが印象的でした。層別分解、変数分解、プロセス分解といった具体的な手法を学ぶことで、実際の業務においても、売上やクライアント提案、SNSなどのデジタルメディア戦略に応用できると感じました。 どの対策が有効? 実際の事例として、例えば自分や担当媒体の売上分析において、売上構成を細分化して傾向をつかむと、具体的な対策案をいくつも立てられることを学びました。また、クライアントへの提案では、ありたい姿を数字で設定し、その後、どの変数が大きな影響を及ぼしているかを分析することで、より説得力のあるプランが構築できると実感しました。 実践への自信は? 今回の学びは、単なる理論にとどまらず、自社メディアの成長や日々の業務改善にも直結する方法論であり、今後の実践に向けた大きな自信につながりました。

データ・アナリティクス入門

データ分析で見えてくる未来へのヒント

データ分析の基礎を理解するには? データ分析を始めるにあたり、まずはデータの形式を理解し、その違いを把握することが重要だと感じました。分析に必要なデータを集め、形式に合わせた加工を施し、さらに可視化することで示唆を得る流れを認識しました。特に、データの性質をしっかり理解しないままでは、可視化しても意味がないことを学びました。 どう業務課題を探索する? 例えば、各店舗での様々な商品の契約状況から、それぞれの商品の契約者に共通する特徴を可視化したり、取引履歴と商品の契約状況の関連性を探るといった作業は、まずデータの性質を把握することから始まります。データを比較し、その特徴を掴むことで、業務課題に関連するデータが何であるかを見極めることができます。 他社事例をどう活かす? また、他社のデータ活用事例を知ることで、自社の業務に置き換えて考え、業務上の課題を発見する手がかりとすることができました。社内においても、各種システムで収集・蓄積されているデータの内容を把握し、それを整理して業務課題を解決するための手法を模索することが大切です。こうしたプロセスを経て、データの性質を十分に理解し、適切に可視化し比較することで、より良い業務改善に繋げることができると感じました。

クリティカルシンキング入門

データ分解の新たな視点で未来を開く

数字分解の効果は? 数字を分解することで、データの解像度が向上します。分解の方法によって、見やすくなる効果があります。また、分け方の工夫によって差が現れたり隠れたりするため、多様な分け方が必要です。より多くのデータと分け方が組み合わさることで、分析の精度と確度に信頼性が増します。仮に思ったような結果が得られなくても、その分析が不要だったと分かるだけでも価値があります。そして、新たな分析を試みる契機となります。 グラフ作成の落とし穴は? データを分析する際、時には望む結果が出るようにグラフを作成してしまうことがあります。しかし、今回の学びから、精度と確度を上げるためにはデータのさらなる分解が必要であると感じました。今後は、MECE分解の3原則を意識してデータ分析を進めていきたいと思います。 再検証は必要? まず、過去の不具合事例を再度分析し直してみようと思います。一度結論を出した事象を再検証することで、今回の学びがどれほど有効であったかを確かめ、同様の結論に至るかどうかを確認するのは興味深い取り組みです。データ分析は非常に重要で、誤った原因を見つけてしまうと、対策や改善がすべて無駄になる可能性があります。そのため、より多くの分解を心がけたいと思います。

アカウンティング入門

数字で解明!経営の未来を握るアカウンティングの力

アカウンティングの重要性とは? アカウンティングは、自社の経営が順調かどうかを数字で判断するために必要不可欠です。現在、私は特にB/S(貸借対照表)の理解が不足していると感じています。P/L(損益計算書)と組み合わせて、今の経営状態が十分であるのか、さらに改善が必要なのかを判断したいと考えています。 経営判断にどう活かす? 具体的には、税理士との話し合いの場での活用を考えています。また、日々の経営判断においては、新年度の給与賃金や役員賞与の決定に影響を与えることになります。今、私が最も重要だと考えている経営課題は、新規雇用に使える予算を具体的に把握することです。特に、遠方からの雇用に際し、住宅補助を提供できる経営状態にあるのか、それとも難しい状況なのかを、以前のように曖昧な方法ではなく、数字でしっかり理解しておきたいです。この点に関して、実際に書き出してみることで納得しました。 学んだ内容をどう活用する? 今後は、学んだ内容を自社の過去1-3期の決算書と照らし合わせながら具体的に分析を行い、すぐに経営判断に活かす必要があります。そのため、学んだことは可能な限り速やかに実践し、頭の中でイメージするだけでなく、実際に書き出してまとめるように心掛けます。

データ・アナリティクス入門

分解で見える企画成功の秘訣

どうして分解が必要? 問題を特定するために、物事を分解する重要性を再認識しました。特に、What、Where、Why、Howといった各要素を順序立てて整理することが大切ですが、どうしても先にHowに偏らないように注意が必要です。また、原因を探る際にも、対概念を活用して思考の幅を広げることで、行き当たりばったりにならないよう努めています。 企画はどう進む? このアプローチは、マーケティング施策の企画や振り返りの段階で活用したいと考えています。企画時には、お客様の課題を起点としてWhat、Where、Why、Howを考慮し、振り返りの際には、企画当初の想定と異なる結果や、思わしくなかった施策について、原因を丁寧に掘り下げることが目標です。さらに、想定通りの成果が得られた場合にも、何が良かったのかを整理し、今後の改善に役立てていきたいと思います。 年度末は何を見直す? 年度末の振り返りにおいては、良かった施策、期待に沿わなかった施策、今後は中止すべき施策、そして継続すべき施策を洗い出し、それぞれの原因を細かく分析していく予定です。この手法は、私自身だけでなく、メンバーとも共有しながら進め、今後のマーケティング施策の質の向上に繋げていきたいと考えています。

データ・アナリティクス入門

仮説とデータで進む成長の一歩

データ分析の意義は? データ分析そのものが目的ではなく、What・Where・Why・Howの各ステップに沿って、イシューの設定、問題の特定、原因の分析、そして解決策の構築まで進めることの重要性を学びました。 課題解決の要点は? また、課題解決とは現状のマイナス面を正常に近づけるだけでなく、将来のありたい姿に向けた戦略を立てることも含まれている点が新鮮な発見でした。 なぜ提案が浅く? 内部監査の担当として実務を行う中で、課題の特定までは進むことができても、真の原因分析が困難で、改善提案が表面的になってしまうことが多いと感じています。今後は、原因をより深く掘り下げ、具体的な改善策を提案できるように努めたいと思います。また、提起する課題が現状の問題解消を目指すものなのか、将来のビジョンに向けたものなのかを明確に区別して提案できる力を養うことも目標にしています。 仮説検証のプロセスは? What・Where・Why・Howの各場面で仮説を立て、その仮説をデータ分析により検証するプロセスを確実に実行したいと考えています。データ分析だけに留まらず、その他の情報も収集しながら、より深い原因分析と効果的な改善提案ができるよう、引き続き努めていきたいです。

データ・アナリティクス入門

物流の待機料問題を解決する分析手法の習得

分析の基本とは? 「分析とは比較である」という教えについて学びました。これは、課題を要素に分解して整理し、個人や会社の状況に応じた基準(目的)を設けて、その要素と基準を比較することを意味しています。基準を「達成すべき目的」とすると、各要素の優先順位や捨てるべきところが明確になってくると感じました。逆に、基準に満たない要素は改善策の検討対象として捉えることができることも学びました。 物流業界での分析方法は? 私は物流会社で働いており、2024年問題の一つとして「待機料」の明確化が挙げられます。待機という問題を要素(要因)に分解し、それらを自社都合と輸送会社都合にグループ化することで、分析の対象が明確になると考えました。 データ活用で何が変わる? 現在、導入済みのアプリから取得できるデータを使い、要素を整理して分析対象を決定する予定です。本講座を通じて、適切な分析方法を理解していこうと考えています。 待機料と時間の相関は? 具体的には、待機料の標準偏差値を算出することで支払い金額の正常範囲を決定し、異常値はチェックする体制を構築します。また、待機料の発生要因と待機時間の相関関係を数値化し、どの要素に対して改善策を打つべきかを社内で共有します。

「分析 × 改善」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right