クリティカルシンキング入門

分解思考で拓くビジネス洞察

どう分析すべき? データの分け方に工夫を凝らすことで、その背景にあるビジネス状況をより的確に表現できることを学びました。単に漫然と分析するのではなく、まずはビジネス自体を深く理解し、その特性を把握した上で適切な仮説を立てるアプローチが重要だと感じました。 プロセスは必要? また、これまで「MECE=層別分解・変数分解」という理解でありましたが、今回、プロセス分解の視点にも改めて注目することになりました。問題が生じる「場所」を特定する際、この新たな視点が非常に有効だと実感しています。 保険契約の見方は? グループ会社の保険契約状況の見える化においては、同一保険の加入状況を売上金額、保険料、人員数、事業セグメントといった切り口で層別分解し、また対象資産と保険料率による変数分解を行うことが考えられます。同様に、業務効率化を図る際も、まずは業務プロセス自体を検証し、プロセス分解を通じて効率向上の余地がある部分を明確にすることが求められると感じました。 全体はどう見える? 今後は、入手した対象データに対して様々な切り口での見える化を実施し、そこから読み解かれる課題や方向性を対話を通して共通認識にまとめ、実際の行動に結びつけていきたいと考えています。場当たり的な改善ではなく、全体プロセスをMECEの視点で分解して俯瞰的に分析することで、より効果的な取り組みを優先的に進めていく所存です。

クリティカルシンキング入門

目に仕事させる分析術

グラフで何が見える? 数字や表をそのまま眺めるのではなく、グラフ化することで「目に仕事をさせる」という考え方が印象的でした。数字を様々な角度から検証し、視覚的に捉えることで、普段は気づきにくい点が浮かび上がると感じました。また、MECEという概念についても、モレなくダブりなく分析するための具体的な手法(層別分解、変数分解、事象のプロセスでの分解)があることを学び、今後の分析において意識して活用していきたいと思いました。 現状把握のコツは? 私は全社の事務部門において、業務プロセス上の課題を明確にし、改善策を提言・実行する役割を担っています。各種データから課題や問題点を抽出する際、今回学んだ分析手法を取り入れることで、より正確な状況把握ができると期待しています。また、メンバーからの意見をそのまま受け入れるのではなく、他の視点も取り入れながらクリティカル・シンキングを活かして問題点を見極める重要性を再認識しました。 多角的な視点は? 日々の報告や相談を受ける際は、数字については多角的な分析ができているか、課題の洗い出しについてはMECEの観点で漏れがないかをひとつひとつ意識しています。必要に応じて分析の切り口を増やし、グラフ化するなど、手を動かしながら客観的に情報を整理しています。説明を行う際にも、これらの視点が十分に盛り込まれているかを確認し、分かりやすい内容を提供できるよう努めています。

アカウンティング入門

売上原価に潜む成長の秘密

売上原価の違いは何でしょうか? 企業分析を行う際、販管費と比べて業界やビジネスモデルによって売上原価の構成が大きく異なる点に着目することが非常に大切です。売上原価は売上獲得に直接関係するコストであり、各企業が採用する価値創造プロセスの違いによって、その内容が大きく変わってきます。学習中には、とある大手企業の事例からこの点の重要性を改めて実感しました。 事業分析の視点はどこでしょうか? まず、自社事業別のPLやBSの分析と、各競合企業の分析が必要であると感じました。当社はビジネスモデルの異なる複数事業の複合体であるため、各事業の価値創造プロセスの違いを意識した分析が求められます。この考え方で競合企業を調査していくことにも意義を見出しています。 利益上昇の理由は何でしょうか? また、売上総利益が前年比で大幅に上昇しているため、その要因を特定する必要があります。ここで注目すべきは売上原価です。原価は売上に直結する支出であるため、まずは売上構成の詳細やその推移を把握し、その上で原価の中身を詳しく調査することが基本になると考えています。 情報整理はどう進めるのでしょう? さらに、必要な社内データが複数のシステムで管理されている現状では、情報の整理が不可欠です。すぐに必要な情報にアクセスできるシステム環境が整えば、より迅速かつ正確な分析が可能となり、大いに業務改善につながると期待しています。

クリティカルシンキング入門

データ分析で見える世界が広がる!

データ分析の最初の一歩は? これまでデータ分析を行う際、どこから手を付けてよいかわからず迷っている時間が長かったのですが、今後は「まずは分解して傾向を探ってみる」「何も見えなくても失敗ではない!」という姿勢でアグレッシブに取り組んでまいります。 情報共有で意識すべきこと 施策立案前の仮説構築、施策の効果検証、上司/同僚/取引先との情報共有や報告など、全体像を漏れなく把握し問題点を特定、改善策を検討し、データ検証し、関係者へ共有/報告するすべてのフェーズにおいて、今週の学習が生かせると感じました。MECE(モレなくダブりなく)は、マーケティングやPDCA改善に欠かせない思考であるため、常に留意して業務に取り組んでまいります。 可視化がデータ分析の鍵? データ分析においては、頭の中で考えるのではなく、まずは可視化できるもので状況を整理することが重要です。頭の中だけで整理したものでは抜け漏れが発生しやすいため、他者と共有する際のツールとしても活用できます。また、切り口に迷うよりもまずは分解をしてみて傾向を探ることが大切です。トライアンドエラーを通じて、分析方法の傾向を掴むことができます。 コミュニケーションで大切なことは? コミュニケーションにおいては、情報共有や報告の際に「モレなくダブりなく」伝えられているかを意識し、データ共有においても相手が理解しやすい加工を心掛けます。

マーケティング入門

「選択と集中で勝つ!ニーズ分析の極意」

セグメンテーションの重要性とは? 印象に残ったのは、セグメンテーションとターゲティングの部分でした。最初の講義でも触れた「誰に売るか?」という基本概念に通じますが、自分たちの魅力を一方的に押し付けるだけでなく、自分たちの強みを理解しつつ、どの人々にニーズがあるのかをしっかりと切り分ける必要があると感じました。不特定多数の顧客が市場に存在し、資源が限られている状況での「選択と集中」というフレーズが特に印象的でした。さらに、売り込む際には伝えたいことを2つに絞ることが重要で、その中で競合との差別化を図ることが大切だと学びました。 限られた資源でどう選択と集中を? この学びは、組織内での課題解決や顧客ニーズに応えるための企画立案に活用できると感じました。現在、資源が限られている中で顧客ニーズに極力応えていく必要があります。しかし、現状では選択と集中が十分できていないため、誰にどんな商品を提供するのが効果的で、そのためにどのように人的リソースや資源を投資するか考えることが重要だと考えています。 新たな思考法で提案をどう改善? 現在、多くの業務がBPOに近い形で進んでおり、複数の顧客ニーズに応えることが求められています。そこで、ニーズの重心を把握し、商品自体を変更することができない状況でも、新たな思考法を活かして、提案を文書や資料に反映し、効果的な提案ができるように努めていきたいと思います。

クリティカルシンキング入門

見えるから伝わる!視覚資料のヒント

視覚手法は有効? 相手に何を伝えたいのかを整理した上で、グラフ化や文字のフォント、色づかいといった視覚的手法を活用することの重要性を再認識しました。これまで日常のプレゼンテーションで実施してきた手法も、実際にその効果を見直す機会となりました。グラフの種類によっては伝えたい内容がより効果的に伝わるものもあれば、逆に伝わりにくくなってしまう場合もあるのだと感じました。また、文字の装飾についても、その効果を意識して丁寧に活用することで、より分かりやすい表現が可能になると実感しました。 会議資料はどうする? 今後は、事業戦略会議資料や事業計画のスライドにこれらの知見を活かしていきたいと考えています。会議資料では、期の初めから時間経過に伴い売上や利益率が変化していく様子を示し、伝えたいポイントを明確に強調することで、資料全体がより分かりやすくなると思います。事業計画においては、過年度との比較や現状分析から次年度以降に注力すべき分野、来期の目標など、視覚的に理解しやすい丁寧な資料作りを心掛けていきたいです。 改善点は何だろう? また、これまで作成してきた資料を振り返り、改善点を見つけ出すことも重要です。伝えたい内容に沿った順序でグラフや図表を配置し、強調すべき箇所には適切な装飾を施すことで、視覚的な訴求力を高め、読みやすく最後まで関心を引き続けられる資料にしていきたいと思います。

データ・アナリティクス入門

データが映す学びの真実

比較検証で何が分かる? データ分析の魅力は、データを漏れなく比較することで仮説を立て、現状を正確に把握できる点にあります。理想の状態が明確になると、実行可能な改善策が見えてくるため、比較検証はとても有効です。また、ヒストグラムや散布図を用いることで、データのばらつきを視覚的に把握でき、適切な分解や分類により分析の精度が向上します。これにより、異なる視点から問題点や改善案を検討できる点が非常に魅力的だと感じました。 実務でどう活かす? 学んだフレームワークを実務で活用するため、過去のデータ分析を再実施し、問題点と改善策を明確にすることを試みました。現状把握には5W1Hを用いた定量的な分析を行い、現場でのヒアリングと合わせることで、実際のデータとのズレを確認しながら解決策を検討しています。これまでグラフを活用してきましたが、ヒストグラムや散布図の導入は初めての試みで、今後さらに活用していきたいと考えています。 効果的な選定法は? 効果的なデータ分析には、収集時に重要な項目を明確にし、適切なデータを選定することが欠かせません。定期的な可視化によりデータの傾向を把握し、その結果を共有することで継続的な改善が図れます。また、What、Where、Why、Howといったステップを守ることで、思考の幅が広がり、仮説とデータに基づく検証を通してより実践的な分析が可能になると実感しました。

クリティカルシンキング入門

未来を創るオンライン学習体験

自分の考えに疑問は? 情報を慎重に読み取り、形式や流れにとらわれることなく、最初に出した自分の回答に疑いをかけることが重要です。特に、どこに重点を置くべきかによってアプローチ方法が異なることがあります。一つの点にだけ集中してしまうと見落としが発生するため、広い視野を持ち、多様な視点からゼロベースで考えることが求められます。 どこを改善すべき? 新しいコンテンツの開発や新オペレーションの考案に際して、前回のコンテンツ実施時のアンケートを分析し、次回への改善点を見つけます。この際、見えたものをそのまま受け取るのではなく、多様な視点から分析を行い、売上を伸ばすためにどこに注目すべきかを考えます。お客様の声や運営スタイル、人件費など、幅広い視点からの観察と熟考がアプローチ方法に影響を及ぼします。 どんなデータに注目? これまで、グラフ上で下回っている部分に注目して改善を試みてきましたが、さらなる成長の可能性にも目を向けていきたいと考えています。異なる特性を持つデータを比較することで、新たな発見が生まれる可能性があるため、目の前のデータだけでなく、それに関連するデータにも焦点を当て、イシューを特定することが求められます。また、様々な視点からの意見が新たな気づきをもたらすため、自分一人で考えるのではなく、ミーティングやデイリーの引継ぎ時間を活用して意見を共有し合うようにしたいです。

クリティカルシンキング入門

分解力で未来を切り拓く学び

分解の基本はどうする? 分解の仕方によって、物事の見え方や捉え方が変わることを理解しました。分解は最初から細かく行うのではなく、まず全体を定義し、広い視点で傾向を捉えることが重要です。その際、分解の切り口として「いつ、誰が、どのように」を意識すると探しやすくなります。また、分解にはMECE(漏れなくダブりなく)を意識することが求められ、層別、変数、プロセスの分解が考えられます。一度分解して終わらず、他の視点も探し続ける姿勢が大切です。 どんな視点で分解する? システム開発提案などで改善系の提案を行う場合には、操作時間や処理時間、問い合わせの状況、不具合の発生状況など、さまざまな視点で分解することが重要です。これにより、より費用対効果の高い提案が可能になります。これまでもデータ分析を行ってきましたが、自分の想定に偏ったデータ分解をしていたことに気づかされました。他の視点があるのか、偏りがないかを常に自問自答しながら、問題の本質を捉えたいと考えています。 来期提案で注目すべき点は? 来期の体制提案では、現行システムの課題を洗い出すことを目指しています。そのために、現行機能の操作性、問い合わせ、要望一覧をまとめ、来期で取り組むべき改修内容の有効性を示し、それに沿った体制を提案したいと考えています。MECEを意識したデータ分析を活用し、説得力のある提案を行えるように努めます。

マーケティング入門

タイミングが鍵!市場成功の切り札

市場反応はどう見る? 今回の学びを通して、製品やサービスが市場で受け入れられるかどうかは、完成度の高さだけで決まるわけではないという点を改めて認識しました。たとえ市場分析を十分に行い、自信を持って開発したものであっても、タイミングやネーミング、見せ方などの要素により、爆発的なヒットにつながる場合もあれば、期待に反して市場からの反応が得られないケースもあると感じています。 普及要件はどう見る? このような不確実性がはらむ市場環境の中で、「イノベーションの普及要件」といったフレームワークは、製品やサービスの受容性を客観的に評価し、改善の方向性を検討するための有用な手がかりとなると確信しました。 売れる理由は何? また、私が担当している製品は、今回のケースのように明確かつシンプルにターゲティングできるものばかりではありません。それでも、類似商品の販売状況から「なぜ売れているのか」「なぜ売れていないのか」という視点で日々考察を深めることが非常に重要であると感じています。 市場動向はどう捉える? 今後は、日常業務においても意識的に他社製品や市場動向を分析し、自社製品の訴求ポイントや改善策に活かしていきたいと考えています。そして、ヒットしなかった商品について、見直すべきか方向転換すべきかの判断基準をどのように持つかという点も、今後の大切な学びのテーマにしたいと思います。

戦略思考入門

視点改革で未来を創る

他者の視点はどう活かす? ビジネスシーンにおいて、経営者、顧客、他者の目線という異なる視点を意識しながら物事を俯瞰することの重要性を改めて実感しました。こうしたフレームワークの習慣が、組織全体に議論のレベルアップを促すカルチャーの醸成につながると感じます。 新ビジネスの進め方は? また、新規ビジネスを推進する際には、次の3点が鍵となると思います。まず、全社横断で活動するために、他部門にとってのメリットを意識すること。次に、ブレインストーミングなどで出た他者の意見を一旦アクションプランに盛り込み、どの段階で実行に移すかを仮の予定として組み込むこと。そして、PDCAサイクルの「C」(改善)の段階で、当初計画とのギャップに着目し、フレームワークを用いて課題の仮検証を行うことです。 強みの捉え方はどう? 自社の強みをどのように定義するかという点については、マネージャークラスの起案者はどうしても主観が入りやすく、やや過大評価になる傾向があると感じています。一方で、現場の担当者は自社の強みに対し、より厳しい評価を下すことが多い印象です。 データ評価のポイントは? さらに、フレームワークによる分析を行う際には、自社評価の前提条件に対するバイアスを可能な限り排除するため、市場シェアや自社財務などの幅広い公表データを十分に活用する必要があるのか、と疑問を抱かざるを得ません。

クリティカルシンキング入門

ナノ単科で人事業務の分析力が大幅アップ!

5W1Hで分析する意義とは? MECEを意識して、5W1Hの視点でモレなくダブりない区分で分析することを実践してみました。その結果、違いがない区分を見つけることの重要性を実感しました。逆に、違いがあると分かった区分については、どの単位で区分することが最も効果的な分析となるかを検証しました。 人事業務への具体的な応用例 担当する人事業務について、以下の場面で活用してみたいと考えています。 採用戦略の見直し方は? 採用については、自社に合う応募者の層を拡大し、志望度を向上させる施策を検討します。具体的には、志望度が高く選考に臨む層の分析を行い、現在効果的に志望度を高められていない層へのアプローチも検討します。それらの分析結果に基づいて、採用イベントや選考プロセスの改善にも取り組みます。 効果的な研修とは何か? 研修については、業務に実効性のある研修の特定と拡充を目指します。具体的には、どの種類の研修が効果的で実務に活用できているか分析し、効果的な手法を拡大する一方で、効果が薄い手法の改善も検討します。 エンゲージメント向上施策を探る エンゲージメントについては、エンゲージメント高く仕事に取り組んでいる層を判別し、逆に低い層の傾向を把握します。具体的には、高いエンゲージメントを持つ層の共通点を事例として紹介し、低い層の改善施策を検討していきます。

「分析 × 改善」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right