データ・アナリティクス入門

問題を解決するための分析フレームワーク活用術

問題の絞り込み方法は? 問題の箇所を明確にするためには、まず分析対象を絞り、原因を考えやすくします。また根本的な原因の仮説を立てる際には、3C(市場、競合、自社)や4P(製品、価格、場所、プロモーション)のフレームワークを活用します。そして、仮説に基づいてデータを集めます。この過程では、必要なデータが何かを見極めることが重要です。 仮説構築の多様性は重要? 仮説は複数立てるべきで、決め打ちにしないよう注意します。また、異なる切り口で網羅的な仮説を立てることも大切です。データ収集は、自分で取りに行ったり、誰かに聞いたりして行います。また、比較のためのデータも集めます。さらに、反論を排除するためのデータを集めることも重要です。自分に都合の良い情報だけを集めるのではなく、説得力のある分析を目指します。 データ分析のポイントは? データを見る際には、意図を持って分析します。例えば、問題箇所を絞り込み、フレームワークを活用して根本的な原因の仮説を立てます。その際、異なる切り口から多角的に仮説を立てるよう心がけます。そして、データを集めて比較し、反論を排除するための情報まで踏み込んで確認します。この一連のステップを可視化し、習慣化することが重要です。 どのフレームワークが適切? 仮説を立てるためのフレームワークについては、自分の業務に適したものを探し、過去の事例から有効なフレームワークを検証します。反論を排除する情報を集めるためには、周りのメンバーの協力を得て壁打ちを行い、反論点を意識的に探るようにします。

クリティカルシンキング入門

視点ひとつで未来が変わる

新たな発想は? 視点、視座、視野というワークを通じて、アイデアを広げる具体的なステップを学びました。各ステップで軸をずらし、視点を変えることで異なる可能性を引き出すアプローチは、短い時間でも新たな発想の扉を開く手法だと感じました。 批判的思考はどう? また、クリティカルシンキングという批判的思考法について学びました。一人でもテクニックを身につけることで、これまで経験してこなかった視点や発想に気づける点、そして周囲の意見を取り入れる大切さを再認識しました。この知見は、分析レポートの作成やデータの取り扱い、施策検討の場面で活かせると感じています。 レポートは分かる? 特に、分析レポートにおいては、読み手がアナリストだけでなく、企画者や経営層といった幅広い層であることを意識する必要があります。事実だけでなく、結果指標や売上といった視点でまとめるプロセスが、より分かりやすいレポーティングにつながると実感しました。 顧客体験を考える? また、企画者の意図や、提供するサービスがどのように顧客体験を改善するかを検討する際にも、今回学んだ視点の切り替えや多角的なアプローチは大いに役立つと考えています。 情報の真実は? そして、日々新聞や書籍などから情報を得る際には、事実と意見を明確に区別しながら、批判的な視点で読み解くことが重要だと感じています。題材を自分ごとに捉え、ベースとなる軸や書き手の意図を考慮しながら、自分なりの表現にまとめることで、本当に伝えたいことは何かを見極めることができると考えています。

データ・アナリティクス入門

仮説検証で切り拓く未来

プロセスはどう検証する? 問題の原因を明確にするためには、まずプロセスを分解して検証することが重要です。解決策として、複数の選択肢を洗い出し、しっかりとした根拠に基づいて絞り込む方法が有効だと感じます。 効果はどう比較? A/Bテストでは、施策の効果を比較しながら仮説検証を繰り返します。あらかじめ検証項目を明確に設定し、1要素ずつ検証することが大切です。 データで判断する? データに基づいた意思決定を行うことで、業務の効率化や成果の向上を目指します。日常の仕事の中で仮説を立て、適切なアプローチ方法を模索してきました。過去の経験では、業務過多のため情報共有が主にメールに頼っていた状況もあり、その際はA/Bツールを利用して、理解度や反応の良さといった観点から効果のある方法を試してみました。例えば、メールでの通知と社内共有ドライブへの保管を比較する取り組みが挙げられます。 学びをどう定着? Week5までに多くの分析手法を学びましたが、学んだ内容を自分のものにするためには、メモを振り返りながらフレームワークの活用やデータ加工、さらに比較する際にどのグラフを使用するのが最適かを検討することが必要だと感じています。まずは実践を通じて知識を定着させ、現代ではAIの助けを借りながら調査の時間や手間を省いていきたいと考えています。 新分野はどう理解? また、動画学習を通じてWebマーケティングの指標など新しいエリアにも触れる機会があり、専門外の分野に対する理解がさらに深まったと実感しています。

データ・アナリティクス入門

競馬データと経済学で勝ち馬予測!

馬と騎手の相関はどう? G1エリザベス女王杯の勝ち馬を予測するために、馬の成績を縦軸に、騎手の成績を横軸に設定すると、相関関係をつかみやすいと感じました。さらに、馬のコンディションを要素として加えることで、勝ち馬の傾向はよりクリアになるでしょう。 平均値はどう捉える? また、平均値について学んだ際には、大谷翔平選手の年俸が推定105億円である一方で、MLB全体の平均年俸は推定7.4億円、中央値が2.3億円とされていることに気付きました。大谷選手のような高収入の選手がいることで平均値が大きく上がっていることが分かります。同様に、YouTuberの収入でも、高所得者が一部の平均値を押し上げていることが明らかです。 株価の動向はどう? さらに、日経平均株価は時価総額の大きな銘柄が加重平均に影響を与えることを学びました。例えば、ある銘柄の株価が上昇すれば、日経平均株価全体も上昇することになります。 業務分析で何が見える? 業務の中では、交換した部品の不良品発生状況を分析することで、故障の傾向を明確にし、予防的な措置を取ることができると考えています。また、分析結果を視覚的に示すことで、説明が容易になるでしょう。部署内では、作業実績を標準偏差で分析し、業務改善に役立てています。 次回の計画はどう進む? 次回のZoomグループワークではフェルミ推定を活用してエリザベス女王杯の勝ち馬を予測する計画です。また、新NISAでは株式銘柄選びや新商品の市場規模予測にも役立てたいと思っています。

戦略思考入門

見える化で挑むコスト改革

学びで何が変わった? 今週は、規模の経済性、習熟効果、範囲の経済性について学びました。これらはコスト削減に役立つという認識は以前からありましたが、具体的に言葉にして整理されることで、より実感できるようになりました。また、効果が見られない場合もあるという説明を受け、自分自身がその点に気づいていなかったことを再認識しました。 ネット効果をどう見る? また、過去にゲーム業界、現在はIT業界にいるため、ネットワーク経済性に関しては日常的に意識する場面が多いですが、今回の学びにより、普段はあまり意識していなかった部分も含めて、再確認することができました。 固定費削減の秘訣は? 私の所属する会社はデータ分析をビジネスの柱としており、これまで競合が比較的少なく、専門職であったため高コストでも許容されていました。しかし、最近ではLLMやAIエージェントの登場で、専門職に限定されない業務も増えているため、差別化戦略を検討する一方で、コスト削減が重要な課題となっています。いかに固定費を下げ、売上や利益を向上させるかが喫緊のテーマとなっており、今回の学びは具体的な施策を検討する際の重要な軸として活用していこうと考えています。 可視化で議論進む? 今後は、各施策にフレームワークを適用して抜け漏れがないか、また見落としているメリットやデメリットがないかを整理し、可視化していく予定です。上司とのディスカッションは口頭で進むことが多いため、こうした可視化を通じて議論をより明確に進めていきたいと思います。

データ・アナリティクス入門

戦略的思考で新規事業を成功に導く方法

現状と理想のギャップをどう見極めるか? 現状と理想の姿にギャップが生じている場合、すぐに対策(How)を考えがちですが、まずは現状の問題や事象の要因(What)を特定することが重要だと理解しました。思考プロセスは4段階あり、What, Where, Why, Howの順で進めることで、限られた資源を最も効率的に活用できる打ち手を立案できると分かりました。また、ロジックツリーを用いてMECEに考えるフレームワークは、アイデア出しの際に抜け漏れをなくすのにも役立つと分かりました。 戦略的な思考が今週学んだ鍵? 今週学んだことは、戦略的に物事を考える上で基礎的なものでしたが、だからこそあらゆるシーンで適用できる考え方だと感じました。新規事業開発の業務の中で、11月から開始する実証実験をどのように進めるべきか具体的な内容を検討しています。ありたい姿と現状のギャップを改めて整理し、今回の実証実験での仮説検証の範囲をより明確にしたいと思います(何をやるか、何をやらなくてよいかの境界線を引く)。それを踏まえて、どのようなデータを取得すべきか設計していきたいです。 なぜ施策アイデアにロジックツリーを? 引き続き、実証実験の目的と範囲を明確にし、データ取得の設計を行います。また、自身が考える施策アイデアについては、なぜそれをすべきなのかをロジックツリーをもとに考え、説得力のある説明ができるようにします。ビジネスの場だけでなく日常的にも使えるフレームワークなので、積極的に活用していきたいと思います。

データ・アナリティクス入門

MECE思考で見える未来

情報で迷う理由は? データ分析の際、目についた情報に振り回され、時間がかかってしまうことや、都合の良い情報ばかりに頼って決め打ちになってしまう問題を感じています。そこで、MECEの考え方を取り入れることにしました。 MECEの切り口は? MECEには、全体を複数の部分に分ける層別分解と、全体を構成する変数に分ける変数分解という2つのアプローチがあります。たとえば、層別分解では年齢、季節、販売チャネルなどで分析し、変数分解では売上=客単価×客数や売上=商品単価×販売数のように捉えることができます。 分解できないのは? また、MECEに分解できない例として、モレなしでダブリがある、モレありでダブリがない、モレありでダブリもある場合が挙げられます。今後は、売上分析や業界、顧客分析、さらには業務の課題解決にもこの考え方を積極的に活用していきたいと考えています。 データ加工のポイントは? 現在、売上分析データを加工中であり、来週からはMECEの視点を取り入れたデータ加工を進める予定です。加えて、ロジックツリーを書き出すことで思考のスピードアップを図りながら、業務の課題解決に向けた取り組みも強化していきます。 情報取得の見直しは? 以前、情報の取得に時間がかかることや、都合の良い情報だけを集めて決め打ちしてしまう点に気がつきました。そのため、現在作成中のデータをもう一度フラットに俯瞰し、MECEを意識したフレームワークを使って再検討に努めています。

戦略思考入門

戦略思考で切り拓く未来への一歩

長期視点って大事? 戦略思考は短期的な成果だけでなく、長期的な視点に立って計画や行動を進めることで、持続可能なビジネス成長を実現するための重要な要素であると学びました。限られたリソースである時間や人材を最もインパクトの高い活動に集中させるために、フレームワークを活用して幅広い視野を持つことの大切さも実感しています。今後は、内部の戦略だけにとどまらず、外部の市場や競争環境の変化をいち早く察知し、柔軟に対応できる力を身につけたいと考えています。 どう戦略を磨く? 現在、営業企画として業務に従事しており、ターゲットの洗い出し、データ分析、プロジェクト計画の策定といったさまざまな場面で戦略思考の必要性を感じています。今後は、アウトプット作成に際して常に戦略的な視点が反映されているかを確認する習慣を確立し、より質の高い企画立案に努めたいと思います。 未来をどう描く? まずは、本講座の復習や読書を通して知識をさらに深めることを第一歩とし、次のステップとして自社業務におけるシナリオプランニングに取り組みたいと考えています。複数の異なる市場シナリオを設定し、それぞれに対する営業戦略を検討するとともに、データ分析ツールを活用して顧客データや販売データから有用なインサイトを抽出し、戦略の根拠をしっかりと定めたいです。また、メンターや同僚とのディスカッションを通じたフィードバックを取り入れ、PDCAサイクルをしっかり回していくことで、より実践的な戦略思考を養っていく所存です。

データ・アナリティクス入門

ひらめき!挑戦の軌跡

問題解決の狙いは? 問題の所在を明らかにするためには、セグメンテーションや条件分けが重要です。まずは層別分解に取り組み、プロセスのどこに弱点があるかを見極めることが求められます。こうすることで、解決策が散漫にならず、問題の本質にフォーカスできます。 仮説はどう洗い出す? 仮説の洗い出しは容易ではなく、思いついたことをそのまま書き連ねても網羅性が得られにくいという課題があります。そこで、まずは核となるアイデアを抽出し、それを一般化したうえで再び具体的な形に落とし込む方法が有効です。さらに、対となるカテゴリも設定することで、フレームワークを活用した仮説の構築が可能になります。 データ活用はどう進む? また、「データドリブン経営」の推進に向けては、必要な検討やデータ収集、分析、結果の共有が事業改善の鍵となります。基礎的な経営結果データを効率的に可視化し、顧客タッチ数などの経営結果を動かすドライバデータを補足することが大切です。これにより、どのような意思決定を行うか、またそれに必要なデータが何かを明確にすることが可能になります。 売上分析のポイントは? さらに、売上分析環境の構築にも注力する必要があります。たとえば、PowerBIを活用すれば、各メンバーが見たい切り口でデータを分析できる環境を整備できます。具体的には、商談数、顧客タッチ数、提案数、商談期間などのデータを取得し、可視化することで、より精度の高い意思決定を支える基盤が構築されます。

戦略思考入門

学びと挑戦のリアル軌跡

目標は見えてる? 明確なゴール設定から始まり、現状とのギャップを分析し、そのギャップを埋めるための戦術―つまり、課題抽出とその解決策の策定―が重要であることを改めて認識しました。また、実行することとしないことをはっきりさせることも大切だと感じました。 戦略はどう進む? さらに、自社のビジネス戦略をブラッシュアップするため、学んだフレームワークを活用して、ビジネスインパクトを強化するアイデアを生み出すとともに、これまであまり議論されてこなかった将来の機会やリスクについてのインプットを行いました。これにより、自身の担当領域における中長期戦略の立案が一層具体性を増すこととなりました。 手順は具体的? 現在策定中の2025~2030年の人事戦略においては、以下の手順で戦略を完成させる予定です。まず、既に設定されたゴールをより明確に定義します。次に、そのゴールを達成するために必要な要素を具体的に列挙します。その中で、既に持っている強みと、今まだ不足している機会や弱みをファクトベースのデータ分析により整理します。そして、得られた情報からビジネスインパクトの大きい1~2の領域を選定し、それ以外のものは除外します。選んだ領域に関しては、その裏にある理由やギャップの本質的な課題を徹底的に分析し、解決策を策定します。 合意は取れてる? 最終的には、上司や同僚に戦略ドラフトを提示して議論を重ね、合意形成を図ることで、実効性のある戦略の実現を目指します。

データ・アナリティクス入門

データ比較で気づいた発見と反省

適切な比較対象とは? 「分析の本質は比較」という言葉が最も印象的でした。「Apple to Apple」と「Apple to Orange」という表現が動画で紹介され、過去に何となく使っていたことを思い出しました。しかし、改めて説明を聞くと、適切な比較対象を示す意義があることに気付かされました。 分析のプロセスを見直す 分析を始める前にまず目的を確認し、仮説を立て、そのためにどのデータを比較すべきかを考えるプロセスが重要であることを感じました。今まではこのプロセスを特に意識していなかったことに反省しました。ライブ授業のグループワークでは、人それぞれの多様な見方を感じ取ることができましたが、積極的に発言するメンバーがいる中で、自分がなかなか発言できなかったことを振り返りました。動画やライブ授業のまとめにあった「言語化・教訓化・自分化」が自分にはまだ足りていないと実感し、これからの取り組みに生かしていこうと思いました。 業務へのデータ分析活用 現在の業務でデータ分析を主に行うことは少ないですが、普段接するデータについても何を比較すべきかを考え、その視点を持って関わっていこうと思います。データを見る際には、まず目的を明確にし、何をアウトプットしたいのか、何のための分析なのかをしっかり考えて業務に取り組むことが大切です。データ比較を通じて新たな気づきを得るために、データに向かう際の意識を高めていきます。日々の業務でこれを実践していこうと考えています。

データ・アナリティクス入門

まずは基本!仮説で切り拓く学び

仮説はどのように考える? 仮説を考える際には、複数の仮説を立てることと、それぞれの仮説に網羅性を持たせることが重要です。また、反論を排除するためにも必要なデータを集め、仮説同士を比較検証できるようにすることを忘れてはいけません。 仮説定義はどうなってる? ビジネスの現場における仮説とは、ある論点に対する仮の答えを示すものです。仮説は、目的に応じて「結論の仮説」と「問題解決の仮説」に大別され、時間軸によって仮説の内容が変化します。 戦略はどう変化してる? マーケティングにおいては、プロモーションの戦略がIT関連の技術発展によって大きく変動する現状を踏まえ、トレンドを正確に抑えることが重要です。同時に、顧客満足度を非常に高いレベルに引き上げることでブランド価値を高めることが求められます。 実施前に何を検証すべき? 実際、分析の段階で仮説を立てずに作業してしまうことが多いと感じました。そのため、より網羅的に情報を確認するためにも、クリティカルシンキングを意識することが有効だと実感しています。これまでフレームワークの活用に対して懐疑的な面もありましたが、まずは基本に立ち返ることが大切だと感じました。 新施策の仮説検証は? 新しい施策を進める際には、4Cの視点を取り入れて仮説を立て、その仮説に基づいて必要なデータを収集することが有効です。データ収集の際は、自己のバイアスに捉われることなく、網羅的な情報収集を心がけるよう努めています。

「データ × ワーク」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right