データ・アナリティクス入門

実情を活かす多角的分析のすすめ

目的や進め方は整っていますか? 分析に取り組む際は、まず目的や進め方を明確にし、関係者と認識を合わせることが重要だと学びました。また、1人で行う場合でも、フレームワークを活用して多角的な視点から分析し、偏りのない結果を目指すことが大切だと感じています。 今後の計画は具体的? 今後は、目的と求めるアウトプットをしっかりと定めた上で、データだけでなく現場の実情も踏まえた多角的な分析を実施していきたいです。各部門の意見を取り入れながら、What・Where・Why・Howの各ステップを丁寧に行き来することで、根拠ある改善提案へとつなげていくことを目指します。

データ・アナリティクス入門

仮説の罠を超える学び

仮説の固執はどう? これまでの経験から、仮説を立てる際に一方的に「決め打ち」してしまっていたことが反省点として浮かび上がりました。たとえば、部署としての方針を説明する資料作成時に、特定の仮説に固執し、その仮説に合わせたデータ収集に偏ってしまう傾向がありました。 多角的検証はどんな感じ? これからは、まず複数の視点からフレームワークを活用して仮説の網羅性を確認し、自分自身で異なる可能性を批判的に検証することを心がけたいと考えています。また、データ収集に際しては、どのように集計し、どのようなグラフや指標で示して分析を進めるかを意識することの重要性も再認識しました。

戦略思考入門

やさしく学ぶ経済性のヒント

どの経済性が重要? コスト低減のためには、「規模の経済性」「習熟効果」「範囲の経済性」「ネットワークの経済性」を理解することが重要です。現状のデータを正確に把握するとともに、外部要因も考慮し、どの要素を活かせるかを見極める必要があると学びました。 属人依存を解消? また、規模の経済性と範囲の経済性については、これまでの製造業での取り組みでも実践してきた内容です。一方で、習熟効果の背景には、特定の個人に依存するリスクが潜んでいると感じています。そのため、属人化の問題を解消するために標準化を進め、習熟効果を効果的に引き出す対策が求められると思います。

クリティカルシンキング入門

心に響くスライドの秘訣

スライドの意図は? グラフとメッセージが連動するスライド作成のプロセスや考え方が非常に印象的でした。通常、スライドはどうしても作成者の主観が反映されがちですが、各ページのメッセージと目的に注目し、聞き手にスムーズに伝わるための多角的な準備や第三者目線を意識することの重要性を再認識しました。 ルーチン作業の意味は? 業務においては、スライド作成やメールでのアナウンスといったルーチンワークが多くあります。特にスライド制作では、結論と背景、データやグラフ、仮説の考察など、各局面で伝えたい内容を聞き手が自然に受け入れられるよう努めたいと思います。

データ・アナリティクス入門

仮説で切り拓く未来への道

仮説で何が変わる? 問題解決の第一歩として、仮説を立てる方法を学びました。仮説にデータ分析の視点を加えると、その説得力や信頼性が一層増すことを実感しています。また、仮説を立案することにより、自分の行動の筋道が明確になり、周囲への説明もしやすくなります。 3Cや4Pの意味は? 仮説の立て方については、特に3Cや4Pといったフレームワークを活用し、複数の仮説を網羅的に考えることの重要性を学びました。決め打ちにせず、幅広い視野で仮説を検討することで、日々の小さな問題にも柔軟に対処でき、周りを巻き込んだ改善活動にも効果的に取り組めると感じています。

データ・アナリティクス入門

多角的仮説で導く最適解への道

仮説をどう見極める? 私は、思い込みや決め打ちで仮説を立てるのではなく、複数の仮説を比較するためのデータを適切に収集することの重要性を学びました。各種フレームワークを活用することで、分析に説得力を持たせることができると考えています。 ITの課題解決は? また、ITを通じて顧客に提供する際には、不具合の原因調査や課題解決に対して様々な解決法が存在することが分かりました。そのため、フレームワークを用いて複数の仮説を網羅的に整理することで、その場に応じた最適な結論を導き出すことができると感じています。
AIコーチング導線バナー

「データ × ワーク」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right