データ・アナリティクス入門

売上2割減に挑む!論理的思考で解決へ

ライブ授業から得た教訓は? ライブ授業で取り上げられた「売上昨対2割減」に向き合う例題についての感想です。このようなオーソドックスな例題に対して、何を知りたいか、どのように仮説を立てるかを考える際、必要な情報を十分に洗い出すことができませんでした。また、適切なグラフを思い浮かべることもできず、ビジュアル化に苦慮しました。しかし、「やみくもに分析しない」「ストーリーを大事にする」という前提は常に意識しています。こうした困難に直面しないよう、フレームワークや論理的思考、分析のための関連情報について日々インプットを続け、実践に活かせるようにしておかなければなりません。 赤字解消に向けた第一歩は? 現在、自部門が赤字という現実に直面しています。まずは実績を集計し、現場のメンバーにもヒアリングしながら情報を集め、自分なりの仮説を明確化することから始めます。そして、4つのステップで分析し、解決に向けて取り組んでいきます。フレームワークを活用し、経験や勘に頼らない形で、フラットに考えながら取り組むつもりです。 チームの協力で問題を解決? 早急に解決が求められる問題のため、迅速に対策を講じます。データ集計の際は、自身の目で確認するだけでなく、メンバーの協力を得ながら多角的にデータを収集します。講座で学んだ内容をチーム内で共有し、部門の問題について関係者とともに仮説を立て、解決策を見つける努力を続けます。

データ・アナリティクス入門

迷走も学びに変える仮説実践

集客の見直しはどう? 実践において、当初「集客」を問題と考えていたものの、活動を進める過程で「集客」を見失い、結果として問題の本質に気づくのが遅れてしまいました。この経験から、目的を常に意識しながら進める重要性を再確認しました。 仮説の多角的検証は? また、動画講義では仮説思考の実践方法について学びました。複数の仮説を網羅的に検討し、一つだけに頼るのではなく、多角的な視点から論点を捉える必要があると実感しました。反論を受け入れる姿勢や、都合の良いデータ集めを避けることで、仮説が誤っている場合にも柔軟に見直すことができるという点に大きな気づきがありました。 仮説の役割は何? さらに、仮説の種類やその役割についても理解を深めました。論点に対して仮の答えを示すコミュニケーション仮説と、問題を解決するための問題解決仮説といった区分や、失敗の原因究明といった過去の事例、あるいは未来の展望に基づく仮説があることを学びました。これらの仮説に検証計画をセットにして進めることで、説得力が増すことを実感しました。 学びと実践の道は? 今後は、複数かつ網羅的な視点で仮説を立てるため、各種フレームワーク(例:4Pや3Cなど)を積極的に学び、状況に応じて最適なものを選ぶ意識を持ちたいと思います。同時に、仮説と検証をセットにした提案を自分自身だけでなく、チーム全体で実践することが重要だと考えました。

データ・アナリティクス入門

仮説思考で課題を究める実践術

フレームワークは何に役立つの? フレームワークの使いどころについて、3Cや4Pといったものは聞いたことがあっても、実際にいざというときに活用できるかどうかが重要だと感じました。今回の実習では、仮説を立てる際に有効に使えると実感できたため、今後すぐに引き出せるように知識整理ツールで整理しておきたいと思います。今後触れる新たなフレームワークも同様に蓄積していくつもりです。 仮説思考で未来は変わる? また、仮説を考えること自体に意義があるという新たな視点も得られました。これまでは、漠然と考えるべき時に考えるという認識でしたが、仮説思考を業務に取り入れることで、課題に対するアプローチがより具体的かつ効率的になると感じています。今後は、積極的にこの考え方を意識して、業務改善に役立てていきたいと思います。 課題解決のヒントは? 部署や会社内に存在する課題を、フレームワークを活用して仮説を立てることで、本質的な問題点の抽出や、課題解決に向けた具体的な行動への落とし込みが可能になると考えます。漠然と感じる課題を仮説によって明確化し、実際の状況把握やデータ収集を通じて、もっともらしい原因に絞り込むことが大切です。そして、その原因を排除するための具体的な行動計画へと繋げ、もし課題が解決しなかった場合には、新たな仮説を立て行動に移すというプロセスを繰り返すことで、問題解決へと導くことができるでしょう。

データ・アナリティクス入門

経営者気分で学ぶ仮説解決術

データと仮説でどう考える? これまでの総復習を通して、まずデータを用いて問題の所在を読み解き、原因を仮説思考で考察し、その上で対策を検討するフレームワークを再確認できました。どんな状況においても、ロジカルに物事をとらえ、データを基に仮説を立てることで問題解決の道筋を描く大切さを強く実感しました。 なぜ一貫性が感じられる? また、ストーリー全体に一貫性があり、学びの流れが頭にしっかりと残りました。経営者になった気分で対策を検討できたことも、非常に印象に残っています。 マーケ実践はどう進む? マーケティングの分野では、日頃の活動にデータドリブンな視点を取り入れることで、施策の有効性の比較、優先順位の設定、費用対効果や効果の見通しなど、具体的な対策を実行に移す自信が持てました。施策の判断軸となる評価項目や様式を統一することで、正しい比較ができる点も大変有用だと感じました。 病院DXで何を改善? 一方で、病院のDX推進においては、導入率のトラッキングや向上施策、トレーニングの立案など、データに基づいた仮説と検証を繰り返す取り組みが今後の課題となると同時に、実践的な対策として役立つと考えています。目的を明確にし、過不足なくデータを収集、複数のメンバーと多角的な視点で仮説をたて検証することで、事前に設定した評価項目を使いながら、効果を正確に測る仕組みを構築する重要性を再認識しました。

データ・アナリティクス入門

仮説が拓くわたしの挑戦記

仮説の基本は何? 仮説とは、ある論点に対して一時的な答えを示すものであり、結論の仮説や問題解決の仮説など、さまざまな形で用いられます。この仮説を立てることで、検証マインドや関心・問題意識が向上し、行動のスピードや精度も高まるという効用があります。 データで示す理由は? また、仮説はそれ自体の正しさをデータで示す必要があり、その方法が非常に重要となります。データにより正しいことが証明されるとともに、他の説が否定される仕組みが求められます。良い仮説を構築するには、フレームワークの活用も有効であり、フィールドワークやエスノグラフィーといった手法が、質の高い仮説作成に寄与するという意見もあります。 仮説思考はどう役立つ? さらに、仮説思考は課題や目標の検討にも役立ちます。次年度の事業目標や事業拡大のために、自分なりの課題設定を行う際、また顧客ニーズの変化や新市場を捉える際に、仮説を立ててアイデアを具体化することが求められます。 来年度の目標設定はどう? 来年度の目標設定においては、売上などの事業指標だけでなく、競合との比較や自社への影響を示す独自のインデックスを仮説として設定することが推奨されます。その仮説がどのような状態になれば「影響がある」と判断できるのか、ほかの指数と照らし合わせながら検証し、実際にデータを収集して売上や実感との整合性を確かめることが大切だと感じました。

戦略思考入門

視野を広げる戦略的思考のススメ

意見対立の要因は? 方針を定め、戦略を決める際に、各事業の意見や目的が異なるため、立場上の意見対立が生じることはよくあると感じました。実務に追われるあまり視野が狭くなることについても、自分自身にも覚えがあり、特に印象に残りました。適切な戦略を立てるには、定量的なデータと根拠をもとに各方面の意見を参考にすることが重要だと思います。また、思考だけで整理しようとすると混乱や抜け漏れが起きることが多いため、フレームワークを活用して論理的に組み立てることが必要です。 戦略の実態は? 現在、自分は戦略を考える立場にはいませんが、「自分の部署で取り組んでいる業務が会社にどのような影響を与えるのか」を常に意識しながら業務を進めていきたいと思います。上層部からの戦略をただ受け入れるのではなく、その戦略がどのような意見や現状をもとに立案されたのかを自分なりに分析し、「自分ならどうするか」を考えながら取り組んでいきたいです。 フレームの壁を感じる? フレームワークを実際に使用したことがないため、概要は理解できても実務に生かせるか不安を感じています。そこで実務でのフレームワークの使用頻度を増やし、視野を広げる試みをしたいです。施策を立案する機会が多いため、KGIやKPI達成のために「なぜそれをやるべきなのか」をフレームワークで整理し、納得してもらえる提案ができるようになりたいと考えています。

データ・アナリティクス入門

データが映す学びの真実

比較検証で何が分かる? データ分析の魅力は、データを漏れなく比較することで仮説を立て、現状を正確に把握できる点にあります。理想の状態が明確になると、実行可能な改善策が見えてくるため、比較検証はとても有効です。また、ヒストグラムや散布図を用いることで、データのばらつきを視覚的に把握でき、適切な分解や分類により分析の精度が向上します。これにより、異なる視点から問題点や改善案を検討できる点が非常に魅力的だと感じました。 実務でどう活かす? 学んだフレームワークを実務で活用するため、過去のデータ分析を再実施し、問題点と改善策を明確にすることを試みました。現状把握には5W1Hを用いた定量的な分析を行い、現場でのヒアリングと合わせることで、実際のデータとのズレを確認しながら解決策を検討しています。これまでグラフを活用してきましたが、ヒストグラムや散布図の導入は初めての試みで、今後さらに活用していきたいと考えています。 効果的な選定法は? 効果的なデータ分析には、収集時に重要な項目を明確にし、適切なデータを選定することが欠かせません。定期的な可視化によりデータの傾向を把握し、その結果を共有することで継続的な改善が図れます。また、What、Where、Why、Howといったステップを守ることで、思考の幅が広がり、仮説とデータに基づく検証を通してより実践的な分析が可能になると実感しました。

データ・アナリティクス入門

AIとフレームワークで広がる問題解決の可能性

AIをどのように活用する? まず、難解な問題解決に向けて、AIを積極的に活用することの重要性を学びました。問題の解決策を探る際、AIの力を借りて多様なアプローチを試みることで、解決の糸口を見つけることができました。 フレームワークの活用法は? 次に、広がった可能性の中から決断を下すのは自分自身ですが、その際にフレームワークを活用することです。より的確な判断を下すために、フレームワークとAIを組み合わせて問題解決を進める方法を学びました。 曖昧な質問でどう思考を広げる? 最後に、従業員に疑問や課題を投げかける際、あえて曖昧な質問を意識的に行うことで思考の幅を広げることです。視点を広げるために曖昧さを残した質問を活用し、従業員の自主的な思考を促進することが効果的であると感じました。 加えて、諦めずに問題と向き合い続ける姿勢を持つことの大切さも再認識しました。特に経営データの分析においては、簡単な答えが見つかる問題は存在しないと思われます。その中で、仮説を繰り返し立てて検証し続けることでしか、問題解決には到達できないと考えました。 持続するために必要なメンタリティは? 諦めない姿勢を持ち続けるために、AIも活用しつつ、自分自身のメンタリティを鍛えることが重要です。問題と向き合い続け、逃げず、他責にせず、必ず解決できると信じて立ち向かう意識を持ち続けたいと思います。

クリティカルシンキング入門

問いの力でビジネスを変える!

正しい問いは何? 正しい問いを立てることの重要性を改めて実感したワークでした。Week1で学んだデータの分解やピラミッドストラクチャーは、適切な問いを立てることができて初めて効果を発揮します。イシューを特定することは、一人では難しく、同僚と共同で行うと論点がずれるリスクもあるため、とても難しいと感じました。しかし、「今解くべき問いは何か」を常に意識しトレーニングを続けていくべきだと考えます。 適切なイシューは何? このスキルは、新規サービスやコンテンツ開発、既存サービスの改良にも応用できそうです。業務や事業における課題は多岐にわたるため、イシューを特定するだけでなく、どのイシューに取り組むべきかを決めることが重要です。より本質的な問いを立てる訓練をしていきたいと思います。また、お客様の声から得られる気づきをイシューに結びつけるインサイトに変える能力も向上させたいです。客観的に分析し、一人の視点に偏らないことを常に意識する必要があります。 新たな切り口はどう? 普段行っている顧客アンケート分析において、従来の方法に固執せず、新たな切り口やグラフの選択を検討したいと考えています。さらに、アンケート項目自体の設計も非常に重要だと感じており、実施に移したいです。また、会議では論点を明確にし、その範囲から逸脱しないように議論することを心掛けていきたいと思います。

データ・アナリティクス入門

在庫の謎、仮説でスッキリ解決!

分析フレームはどう使う? 分析の実施に際して、講義ではプロセス、視点、アプローチという3つのカテゴリに分けたフレームワークが紹介され、シンプルなモデル化が印象的でした。仮説思考のプロセスは「目的の把握」「仮説の立案」「データ収集」「検証」の4段階に分かれており、分析に必要な視点として、インパクト、ギャップ、トレンド、ばらつき、パターンの5つが挙げられました。また、具体的なアプローチとしてグラフ、数字、数式の3つが提示された点も理解の助けになりました。 クライアント事例を深掘り? 現在、あるクライアントから依頼をいただいている基幹システムと倉庫管理システム間の在庫差異に関する分析支援に、本講座で学んだ内容が活かせると考えています。ロケーション、保管場所、品目、品目タイプ、システム、オペレーションなど、複数の要因が複雑に絡み合いながら在庫状況に時間的なずれを生じさせているため、講義の知識が問題解決の一助になるのではないかと思います。 差異分析の視点は? また、Q2で実施している活動において、差異分析のプロセスの意識づけに講義内容を活用できると感じました。オペレーション履歴の抽出や、過去3カ月分のデータを用いた分析の中で、ばらつきやパターンという視点が特に重要であると実感しています。そのため、今回学んだ相関関係を意識した分析手法が有効に働くと考えています。

クリティカルシンキング入門

課題解決の秘訣は「問いのブレ」防止

イシュー特定はなぜ重要? イシューの特定の重要性を改めて実感しました。それ以上に「問い」の方向性をブレないよう意識し続けることの重要性に気付かされました。課題を特定し、イシューを設定した後、実際に分析や議論に移る際、この「問い」がブレることが多々あります。気づけば最初に設定したイシューからずれた議論をしていることが何度もありましたので、改めて見直したいと思います。 データ分析で避けたいミスは? データ分析においては、「問い」の方向性がブレてしまい後で気づき、やり直しが発生することがしばしばです。数字に触れ始めると、「分析」に夢中になり、本来の目的を見失ってしまうことがよくあります。特に注意すべきは「やった気になってしまうこと」であり、過去の経験を通じてこれを痛感しました。この講座を通して学んだフレームワークを意識し、同じ失敗を繰り返さないようにしたいと思います。 言語化の効果とは? 「イシューを押さえ続けること」は「意識」するだけでは難しいため、言語化を必ず意識したいです。言語化することで、自分だけでなく、周りの方との認識統一にもつながります。これができると、自分が「問い」からずれていても、「誰かが気づき」修正してもらうことができます。自身の考えを客観的に見ることは重要ですが、完璧にはできません。常に第三者のヘルプも借りながら進めたいと思います。

データ・アナリティクス入門

学びの軌跡が未来を照らす

仮説の切り口はどう? 原因の仮説を洗い出す際は、フレームワークなどを活用しながら大きく2つに分け、対概念の視点を取り入れて考えることが有用です。その後、問題の原因を明確にするために、ステップを踏んでデータを分析することで精度を高められます。 解決策はどう選ぶ? また、解決策を立案する際には、複数の選択肢をまず洗い出し、しっかりとした判断基準と重み付けを設定した上で、定量的な根拠により絞り込むことが重要です。 アンケートの見方は? アンケートの分析においては、満足度や推奨度などの数値から問題点を見つけ出し、フレームワークを用いてMECE(漏れなく・ダブりなく)を意識しながら原因を掘り下げることが考えられます。対応策を検討する際には、現状設定している軸に加え、コスト、スピード、対象範囲、実現可能性などの評価項目に対して重み付けを行いながら施策を選択していくことが求められると感じました。 分析の盲点はどこ? これまでのアンケート分析では、満足度、推奨度、理解度などを全体の平均値で評価する手法が主流でした。しかし、全体の数値は悪くなくとも狙い通りの結果が得られなかった場合や、自由記述回答の中に不満やクレームが見受けられた際には、回答者の属性ごとに分析を行うことで、これまで気づかなかった傾向や問題点を発見できる可能性があると捉えています。

「データ × ワーク」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right