データ・アナリティクス入門

多角的視点で得た新たな発見

フレームワーク活用のコツは? 課題を考える際、初めから新たに考えるのではなく、まず適切なフレームワークに当てはめることで、情報の漏れなく抜け漏れを防ぎ、新たな観点を追加することが可能です。フレームワークを活用することで、論点の整理がしやすくなります。 仮説はどんな視点で? 仮説を立てるときは、単一の固定観念にとらわれず、複数の仮説をさまざまな切り口から整理することが求められます。こうした多角的な視点から検討することで、仮説の網羅性が向上し、より効果的な対策が検討可能となります。 情報収集の手順は? データ収集のプロセスでは、誰にどのように情報を求めるかが非常に重要です。単に各種資料に頼るのではなく、実際に知識を有する人を特定し、確認の方法を明確にすることで、比較や反論の排除にも努めるとよいでしょう。 施策実践の始め方は? 施策を検討する際は、目的に適したフレームワークを調べること(例としてChatGPTへの問い合わせ)から始め、複数の角度で仮説を定義する必要があります。また、データ収集においては、各種資料の作成者を特定し、作成の意図や補足情報、意見などアドバイスを求めながら取り組むことで、より充実した施策の策定が期待できます。

データ・アナリティクス入門

問題解決のための仮説構築法を再確認

仮説構築の重要性を学ぶ 今週は仮説構築の方法を学びました。仮説を立てる際には、複数の仮説を立て、その仮説同士に網羅性を持たせることが重要だと感じました。特に印象に残ったのは、仮説を立案しても都合の良い情報だけに頼らないことです。この点で、チームメンバーにも受講してもらいたいと強く思います。 ミニマム検証の重要性 仮説を立てた後、ヒアリングやアンケートなどを通じてミニマムに検証を行い、そのプロセスを繰り返すことが新規事業の場でも求められます。このことを再確認できました。 検証結果報告の注意点 現在、10月の実証実験に向けて、検証目的や結果の仮説を立案しています。検証結果を報告する際には、都合の良いデータだけを取得し、反論を排除することは絶対に避けたいと感じています。そのため、3C分析や4P分析といったフレームワークを活用し、再度検証結果の仮説立案を試みる予定です。 仮説立案を継続する意義 日々の業務においては、改めて仮説立案を実行し、問題解決の仮説について考えていきたいと思います。具体的には、what、where、why、howといった視点から仮説を再度見直すことで、自分の業務に対する関心や問題意識を向上させようと考えています。

データ・アナリティクス入門

一歩先行くヒントは4Pにあり

仮説の幅をどう広げる? GAiLで4Pフレームワークを活用することで、仮説の幅を広げる経験ができました。この学びから、3Cや4Pフレームワークを活用し、反復してアウトプットする重要性を改めて実感しました。また、仮説の意義や目的についてもしっかりと学ぶことができ、日常の業務において自ら仮説を持つことの大切さを再認識することができました。 データで何が変わる? 一方で、「平均を算出したり標準偏差を求めたりするひと手間を惜しまない」「必要なデータがない場合は、仮説を裏付けるために自らデータを取りに行く」という点が特に耳に残りました。忙しさを理由に現状のデータだけで問題解決できると考えがちですが、より良い解決のためには、ひと手間をかける姿勢が必要だと感じています。 未来志向の仮説は? これまで、問題解決の仮説を立てる際には、過去のデータに依存する傾向がありました。しかし、現在の業務では将来に向けた視点が求められているため、思考のアプローチを変える必要を感じています。今後は、過去のデータだけに頼るのではなく、アンケートやインタビューなどを活用して新たなデータ取得に努め、4Pフレームワークを用いて幅広い仮説の検証に取り組んでいきたいと思います。

データ・アナリティクス入門

市場を読み解く!成功する仮説の立て方と活用法

3Cと4Pの学び方は? 3C(市場・顧客・競合・自社)と自社を細かく検討するためのフレームワークである4P(製品・価格・場所・プロモーション)の関係について学びました。これにより、市場分析がより具体的かつ体系的に行えるようになります。 仮説を複数立てる意義とは? また、仮説の立て方についても学びました。仮説は一つではなく、複数立てることでその有用性が証明されやすくなります。仮説には問題解決のための仮説と結論の仮説があり、それぞれの役割が明確です。 新卒市場での戦略は? 例えば、新卒市場での人材獲得では、採用実績校と定着性を数値化し、学校訪問や求人活動を行うことで、技術系就職担当教授やキャリアセンターの職員に対する認知と共感を得る可能性が向上します。これにより、相関関係が期待できる重点対象校へのアプローチが効果的になります。 中国・四国エリアでの具体的な活動 具体的には、中国・四国エリアの国立高専(香川、阿南、新居浜、高知、呉、宇部、米子、松江、津山)を対象に、卒業生名簿と直近3~5年間の実績データをもとに学校訪問を行います。特に、内々定者がいる学校には個別情報を対面で提示し、認知と共感を高めるよう働きかけることが重要です。

データ・アナリティクス入門

データ視点で学びの成果を実感

アウトプットの重要性は? 学んだことをアウトプットできる場として、最終課題やグループワークの課題に取り組むことができたのは、とても良かったです。講義を受ける前よりも、データを見る際に「何のために」「何を明確にするのか」「どのデータとの比較を行うのか」という視点を持てるようになりました。このような視点を持てるようになったことが、個々の学びが自分の成長に結びついていると感じています。 振り返りの重要性とは? しかし、全講義を通して何を学んだのかと問われた際に、すぐに言葉が出てこなかったのは振り返りの重要性を改めて実感させられました。研修や知識をインプットした後に、そのまま放っておくのではなく、自分が何を学んだのかを振り返る時間をきちんと取ることが大切だと感じました。 学びの定着に必要なことは? また、目的意識を持つことがインプットとアウトプットの質を向上させると感じました。迷った時こそ「何を目的にこの仕事をしているのか」に立ち返ることが大切です。そして、何を学んだのかを人に話したり、紙に書いたりして振り返りを行うようにすること、自分の言葉でインプットした内容をまとめ人に伝えて意見をもらうことが、学びの定着に繋がると実感しました。

クリティカルシンキング入門

コツコツ学びが仕事を変える

学習時間はなぜ難しい? 今回の勉強は、以前のデータ分析の際とは異なり、毎朝コツコツと学ぶ時間を確保することが難しく、順調に進めることができませんでした。一方、実務で自然に意識していた内容が学びの一部に反映され、知識の整理に役立ちました。その結果、全体としては勉強になったと感じています。 グループ参加はどう感じる? また、グループワークへの参加については、後から参加したほうがよかったと反省しています。今後は、初めから積極的に関わることで、より多くの視点を取り入れたいと考えています。 問題の解決策は何だろう? さらに、問題解決に没頭してしまいがちな反省もあります。なぜその問題を解決する必要があるのか、根本的な問いを持つことに意識を向け、アプローチを見直すことが必要だと感じました。加えて、人に伝えることにまだ苦手意識があるため、伝え方の手法をさらに学び、業務に生かす努力を続けていきたいと思います。 知識はどう実践する? 前回受講したデータ分析の勉強と今回の学びを組み合わせ、より深い知識として業務に実践していくつもりです。今後も、言いたいことを明確にする思考法や伝え方の訓練を続け、日々の業務に活かしていきたいと考えています。

データ・アナリティクス入門

仮説×検証で広がる未来

仮説と検証はどう? 問題解決の4つのステップの一環である原因の分析について、まず、原因を突き止めるためには仮説を立て、その仮説を実際に検証する必要があります。この検証のために必要なデータを収集し、フレームワークなどを用いて多角的な切り口からデータを引き出すことが大切です。また、解決策の一つとして、WEB上での施策検証に適したA/Bテストが有効です。 データ設計の秘訣は? さらに、現在の課題に必要なデータをどのように設計するかという視点を持つことも重要です。たとえば、共に仕事をするメンバーや経営層に対して、データに基づく裏付けがきちんと説明できるようにすることや、判断を求められた際に感覚的な決断ではなく、しっかりと分析した上で判断できるかどうかを見極める力が求められます。 経験共有の意義は? 皆さんには、業務上で判断に困ったとき、どのようなデータ分析を行って助かったか、あるいは失敗した経験について共有していただきたいと思います。また、最後の最後には勢いも必要ですが、どの程度の分析を行えば十分なのか、自分自身が満足するまで分析すべきか、あるいはどのような基準を持つべきかについて、みなさんと議論してみたいと考えています。

データ・アナリティクス入門

データから見る解決のヒント

問題解決ってどうする? 問題解決の手順を踏む中で、まずは「what(問題の明確化)」「where(問題箇所の特定)」「why(原因の分析)」「how(解決策の立案)」のステップを順に進めることが重要だと再認識しました。原因の仮説を立てるためにはデータ収集が不可欠で、仮説は単に立てるだけでなく、フレームワークを活用して幅広い視点から検討することで有用性が広がると感じました。その際、決め打ちせずにまずは自由に思考を発散させることも大切です。 数字から見える真実は? また、現時点では具体的な数字は得られていないものの、例えば事務処理に関しては実際の受付件数、処理件数、処理できなかった件数、人員数などのデータをまず取得し、そこから何が見えてくるかを仮説として立ててみたいと考えています。ただ「件数が増えているから忙しい、人手不足が原因だ」という決め付けに陥らず、複数の視点で状況を検討する必要性を感じています。 具体的な例には触れませんが、まずは上記のデータを確実に収集することが先決です。その上で、今回の問題解決のステップに沿って、場合によってはフレームワークの活用も検討しつつ、少なくとも複数の仮説を提示できるようにしたいと思います。

データ・アナリティクス入門

基礎定着から実務戦略への挑戦

ライブやグループの難点は? WEEK6のライブ授業では、WEEK1からの振り返りができたものの、まだ基本的な知識が十分に定着していないと感じました。グループワークで自分の意見を述べる際、思いついたことをうまく言葉にできず苦労した場面もありました。「分析は比較なり」や「視覚的にデータの効果的な見せ方」といった考え方の重要性を再認識し、基本的な知識の定着と実務での活用を継続して、熟練度を高めていきたいと思います。 分析と戦略はどう? 私は現在、グループ全体および各店舗のデータ分析や戦略策定を担当しており、来年度の計画立案の時期に入っています。今回の学びを最大限に活用し、戦略立案や目標設定に反映させるとともに、各店舗でのデータ収集、分析、そしてそのデータに基づく戦略立案に生かしていく所存です。 次の学びはどう進む? 今後は、データアナリティクス入門で学んだ知識をしっかり定着させるため、「定量分析の教科書」を活用して理解を深め、実務での活用を通じて実践力を向上させていきます。また、4月から受講するクリティカルシンキング入門を通して、客観的かつ多角的、論理的な思考力を養い、データ分析や戦略立案に役立てたいと考えています。

クリティカルシンキング入門

データ分析で見つけた新たな視点

データ加工とMECEは? データの加工や分け方、そしてフレームワークについて学びました。提示された情報をただ受け入れるのではなく、その背後に隠された情報を見抜く重要性を認識しました。特にMECEの活用方法について考える機会がありましたが、必ずしもMECEにこだわる必要があるのかという疑問も感じました。MECEが手段であり目的でないことを意識することが大切です。 戦略調査の目的は? マーケティング戦略の策定では、現在のサイトへの流入経路や登録経路を様々な角度から調査しました。特に、業歴が長い会社の場合、リピーター率が高いのではないかという仮説を立てて調査し、既存顧客からのフィードバックにどのような特徴があるのかも分析しました。また、成果を上げた新人の要素を細分化して理解を深めました。 連携の秘訣を探る? 最初に関係各所と連携して分析プロジェクトを立ち上げました。プロジェクトに興味や共感を持った人々から順に説明の時間を頂いてミーティングを行い、データ分析によってどのような示唆が得られるかについて話し合いました。その過程でスモールウィンを設定し、うまくいった内容を共有してより多くの人々を巻き込んで進展を図りました。

データ・アナリティクス入門

フレームワークが導いた学びの光

原因解析のコツは? what→where→why→howの順に問題を捉えることで、原因解析を体系的に進めやすくなります。フレームワークを利用することで、見落としなく検討でき、説明もしやすくなる点が非常に役立ちます。また、自分自身の思考のクセを理解することで、視野が偏らないよう意識することも大切です。情報分析を通じて、傾向を把握し、結論へと近づくプロセスは非常に有益です。 合意形成の秘訣は? 通常業務の場では、まずイシューを明確にし、その上で他者と合意形成を図ります。次に、多様なアイデアを出しながら仮説を立て、検証を重ねることで、より説得力のある説明が可能になります。単なる常識的な案ではなく、分析結果を生かしながら良い案を生み出すことに挑戦することが重要です。 重要なポイントは? 例えば、コストダウン施策の検討においては、膨大なデータの中からどの部分に着手するかを問い、自分にとって最重要と思われる情報に絞って集中的に分析します。仮説を立て、検証を繰り返す過程は、開発業務と同様の手法で進められます。そして、問題解決のためにどのような手段が最適かを考え、他者にも分かりやすく伝える工夫が、成功へと繋がるポイントとなります。

データ・アナリティクス入門

フレームワークを使いこなしデータ分析力を高める方法

フレームワークの活用法をどう高める? コンサルティング業務全般で役立つ3Cや4Pのフレームワークは、日々の業務で活用しています。しかし、反論を排除するデータまで踏み込めていない場面があるのが現状です。現状の問題や課題を批判的に捉える視点を持ち続け、本質的な課題や仮説・回答を考え抜くことを諦めない姿勢が重要です。 データソリューションの資料作りにおけるポイントは? 現在作成中のデータソリューションサービスの営業資料には、データ分析の手法やその需要性を盛り込みます。フレームワークは組み合わせて使うことで本質に近づくことができるため、シャープな推論ができる頭の使い方が求められます。そのため、フレームワークを複数組み合わせて使う力を向上させることが重要です。 フレームワークの判断力をどう養う? 具体的には、以下を実行します。まずは分析でよく使うフレームワークを単体で使いこなせるようにします。その上で、単体で使いこなせるフレームワークの数を増やします。そして、組み合わせることによって効果を増幅させるパターンを覚えます。常にどのフレームワークを組み合わせるのが最適かを考え、最適なパターンを選べるよう、判断力を養っていきます。

「データ × ワーク」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right