データ・アナリティクス入門

データ分析の基本を理解し深堀り

分析の基本を理解しよう 分析は比較であるという基本を理解することが重要です。目的や仮説をもとに分析に取りかかること、そして問題解決のステップ(What-Where-Why-How)を意識することが求められます。仮説を立てる段階から、何と比較するかを考えながらデータを集め、それを加工・集計し、ビジュアル化することで発見につなげるという手順が大切なのです。 仮説立案の重要性 現在の業務では、多種多様なデータが提示されることが多く、闇雲に分析してしまうことがあります。ここで重要なのは、仮説をしっかり立てて分析に取り組む姿勢を忘れないことです。 データ収集から始めよう 今後の業務では、どのデータを集めるかという段階からスタートします。その際に、学んだことを振り返りながら全体の設計に取り組みたいと考えています。 フレームワークの活用法 今回の講座は自分にとって納得感のあるものでしたが、人に説明や指導するにはまだ至っていません。復習しつつ、意識して普段の業務に当たることで、講座で学んだ内容を自分のものにしていきたいです。特に、フレームワークについては知識としては以前から持っていましたが、きちんと使用したことがなかったため、今後は積極的に活用していきたいと思います。

データ・アナリティクス入門

フレームで切り拓く実践PDCA術

仮説整理で何が見える? フレームワークを用いて仮説を整理することで、話がよりクリアになると再認識しました。3Cや4Pの視点から現状を見渡すと、どこに弱みがあるか、そしてどこをさらに掘り下げる必要があるかが明確になります。また、既に立てた仮説を裏付けるためだけでなく、客観的なデータの捉え方によって新たな仮説を構築する余裕も必要だという点が大変勉強になりました。 PDCA運用で何が変わる? 自社を取り巻く環境や4Pの側面から弱点を探し、仮説を立てた上で行動すること、そしてその行動にスピードを求めるという考えを再確認しました。PDCAサイクルを高速で回すためには、自分なりのロジックを持ち、行動の根拠をはっきりさせることが重要です。失敗した際には、何が原因であったのかを4Pや3Cの視点で分解し、再度計画を練り直すことが求められると感じました。 次の一手はどう考える? 今後は、週単位で顧客に対する活動内容を整理し、成功例と失敗例を振り返りながら、3Cや4Pの観点で要因を箇条書きにして分析していく予定です。そして、次に取るべき具体的なアクション、理想とするマーケットの姿、そして足りない部分を定量データと実行動作、競合の動向を意識しながら活動を続けていきたいと思います。

データ・アナリティクス入門

振り返りが未来を変える瞬間

復習はどう進める? これまでの学びを振り返り、今後のありたい姿と具体的な取り組みを体系的に整理できました。振り返りを進める中で、全ての内容を完全に洗い出せたわけではなく、すでに忘れてしまっている部分も多いことに気づきました。そのため、何度も繰り返し復習し、実践の中で活用することが大切だと感じています。 管理とサポートの課題は? 私の業務は、製品の管理とサポートに関わるものです。サポート内容に対する不満と製品そのものへの不満があり、それぞれ解決すべき課題が異なります。また、即座に対処できるものと、投資や時間を要するものも混在しています。相関分析を活用して、不満の原因となる主要項目を特定し、優先順位をつけた上で対応していく意向です。 方向性のズレはなぜ? これまでの学びの中で、方向性を見誤ったり着眼点がずれてしまうことがありました。そのズレが生じた原因を、経験や定性的なデータをもとに検証し確認する必要性を感じています。さまざまなフレームワークを活用し、仮説を立てたり目的を明確にすることが、今後の正確な分析に欠かせないと考えています。ただし、数値だけに頼ると誤った解釈につながる恐れがあるため、解説書や事例を通じて知識をさらに深めるよう努めたいと思います。

データ・アナリティクス入門

ロジカル思考で未来を創る

仮説を深掘りするには? 視野を広げて仮説を考えるために、3Cや4P、SWOT、5W1Hなどのフレームワークを活用するという視点は、自分にとって盲点でした。普段は頭の中で拡散的に物事を捉えがちですが、MECEに沿った論理的な整理ができるこれらの型を使うことで、抜け落としていた観点を補うことができると実感しました。 データの活用法は? また、データの取得方法についても、新たにアンケートなどで新しいデータを取ることに注力しがちでしたが、既存のデータを活用する手段もすぐに実践可能であることに気づかされました。特に、パートナーが所持しているデータに着目するという考えは、近くにある資源を有効に利用する良いきっかけとなりました。私自身、所属するグループ全体でリソースを活用することの重要性を改めて認識しています。 問題解決の手順は? さらに、問題解決のステップとして「原因の特定」を意識してきた中で、WHAT→WHERE→WHY→HOWという一連の流れは、非常にわかりやすく、汎用性が高いと感じました。これまで以上に構造的な思考を促すツールとして、エクセルにフォーマット化したフレームワークをデスクトップに置き、仮説を立てるたびに都度活用していきたいと思います。

データ・アナリティクス入門

仮説と枠組みが切り拓く採用戦略

枠組みは何故有効? 仮説を立てる際、何もないところから考えるのではなく、3Cや4Pといったフレームワークに沿って整理することで、思考の構造が明確になりました。実際、これらの手法を用いることで、多角的な発想が生まれ、スピードや行動の精度が向上することを体感しました。 採用戦略、どう練る? 採用担当としては、仮説思考を3Cおよび4Pと組み合わせることで、効果的な採用戦略が練れると感じています。具体的には、3C分析ではカスタマー(候補者)、コンペティター(競合企業)、カンパニー(自社)の視点から状況を整理し、4Pの枠組みではProduct(採用ポジション)、Price(給与・待遇)、Place(勤務地・環境)、Promotion(採用広告・PR)を検討することで、各視点からの課題と仮説を明確にしています。 PDCAは効果的? また、こうした枠組みを基に、毎週のデータ集計時に採用課題に対する仮説を立て、各仮説に対する検証方法を決定してデータを収集しています。その後、得られた結果を分析し、打ち手を検討した上で採用戦略に反映。定期的に効果を測定し、PDCAサイクルを実践することで、常に戦略の精度を上げていくプロセスが整っていると感じました。

データ・アナリティクス入門

多角的視点で得た新たな発見

フレームワーク活用のコツは? 課題を考える際、初めから新たに考えるのではなく、まず適切なフレームワークに当てはめることで、情報の漏れなく抜け漏れを防ぎ、新たな観点を追加することが可能です。フレームワークを活用することで、論点の整理がしやすくなります。 仮説はどんな視点で? 仮説を立てるときは、単一の固定観念にとらわれず、複数の仮説をさまざまな切り口から整理することが求められます。こうした多角的な視点から検討することで、仮説の網羅性が向上し、より効果的な対策が検討可能となります。 情報収集の手順は? データ収集のプロセスでは、誰にどのように情報を求めるかが非常に重要です。単に各種資料に頼るのではなく、実際に知識を有する人を特定し、確認の方法を明確にすることで、比較や反論の排除にも努めるとよいでしょう。 施策実践の始め方は? 施策を検討する際は、目的に適したフレームワークを調べること(例としてChatGPTへの問い合わせ)から始め、複数の角度で仮説を定義する必要があります。また、データ収集においては、各種資料の作成者を特定し、作成の意図や補足情報、意見などアドバイスを求めながら取り組むことで、より充実した施策の策定が期待できます。

データ・アナリティクス入門

問題解決のための仮説構築法を再確認

仮説構築の重要性を学ぶ 今週は仮説構築の方法を学びました。仮説を立てる際には、複数の仮説を立て、その仮説同士に網羅性を持たせることが重要だと感じました。特に印象に残ったのは、仮説を立案しても都合の良い情報だけに頼らないことです。この点で、チームメンバーにも受講してもらいたいと強く思います。 ミニマム検証の重要性 仮説を立てた後、ヒアリングやアンケートなどを通じてミニマムに検証を行い、そのプロセスを繰り返すことが新規事業の場でも求められます。このことを再確認できました。 検証結果報告の注意点 現在、10月の実証実験に向けて、検証目的や結果の仮説を立案しています。検証結果を報告する際には、都合の良いデータだけを取得し、反論を排除することは絶対に避けたいと感じています。そのため、3C分析や4P分析といったフレームワークを活用し、再度検証結果の仮説立案を試みる予定です。 仮説立案を継続する意義 日々の業務においては、改めて仮説立案を実行し、問題解決の仮説について考えていきたいと思います。具体的には、what、where、why、howといった視点から仮説を再度見直すことで、自分の業務に対する関心や問題意識を向上させようと考えています。

データ・アナリティクス入門

一歩先行くヒントは4Pにあり

仮説の幅をどう広げる? GAiLで4Pフレームワークを活用することで、仮説の幅を広げる経験ができました。この学びから、3Cや4Pフレームワークを活用し、反復してアウトプットする重要性を改めて実感しました。また、仮説の意義や目的についてもしっかりと学ぶことができ、日常の業務において自ら仮説を持つことの大切さを再認識することができました。 データで何が変わる? 一方で、「平均を算出したり標準偏差を求めたりするひと手間を惜しまない」「必要なデータがない場合は、仮説を裏付けるために自らデータを取りに行く」という点が特に耳に残りました。忙しさを理由に現状のデータだけで問題解決できると考えがちですが、より良い解決のためには、ひと手間をかける姿勢が必要だと感じています。 未来志向の仮説は? これまで、問題解決の仮説を立てる際には、過去のデータに依存する傾向がありました。しかし、現在の業務では将来に向けた視点が求められているため、思考のアプローチを変える必要を感じています。今後は、過去のデータだけに頼るのではなく、アンケートやインタビューなどを活用して新たなデータ取得に努め、4Pフレームワークを用いて幅広い仮説の検証に取り組んでいきたいと思います。

データ・アナリティクス入門

市場を読み解く!成功する仮説の立て方と活用法

3Cと4Pの学び方は? 3C(市場・顧客・競合・自社)と自社を細かく検討するためのフレームワークである4P(製品・価格・場所・プロモーション)の関係について学びました。これにより、市場分析がより具体的かつ体系的に行えるようになります。 仮説を複数立てる意義とは? また、仮説の立て方についても学びました。仮説は一つではなく、複数立てることでその有用性が証明されやすくなります。仮説には問題解決のための仮説と結論の仮説があり、それぞれの役割が明確です。 新卒市場での戦略は? 例えば、新卒市場での人材獲得では、採用実績校と定着性を数値化し、学校訪問や求人活動を行うことで、技術系就職担当教授やキャリアセンターの職員に対する認知と共感を得る可能性が向上します。これにより、相関関係が期待できる重点対象校へのアプローチが効果的になります。 中国・四国エリアでの具体的な活動 具体的には、中国・四国エリアの国立高専(香川、阿南、新居浜、高知、呉、宇部、米子、松江、津山)を対象に、卒業生名簿と直近3~5年間の実績データをもとに学校訪問を行います。特に、内々定者がいる学校には個別情報を対面で提示し、認知と共感を高めるよう働きかけることが重要です。

データ・アナリティクス入門

データ視点で学びの成果を実感

アウトプットの重要性は? 学んだことをアウトプットできる場として、最終課題やグループワークの課題に取り組むことができたのは、とても良かったです。講義を受ける前よりも、データを見る際に「何のために」「何を明確にするのか」「どのデータとの比較を行うのか」という視点を持てるようになりました。このような視点を持てるようになったことが、個々の学びが自分の成長に結びついていると感じています。 振り返りの重要性とは? しかし、全講義を通して何を学んだのかと問われた際に、すぐに言葉が出てこなかったのは振り返りの重要性を改めて実感させられました。研修や知識をインプットした後に、そのまま放っておくのではなく、自分が何を学んだのかを振り返る時間をきちんと取ることが大切だと感じました。 学びの定着に必要なことは? また、目的意識を持つことがインプットとアウトプットの質を向上させると感じました。迷った時こそ「何を目的にこの仕事をしているのか」に立ち返ることが大切です。そして、何を学んだのかを人に話したり、紙に書いたりして振り返りを行うようにすること、自分の言葉でインプットした内容をまとめ人に伝えて意見をもらうことが、学びの定着に繋がると実感しました。

クリティカルシンキング入門

コツコツ学びが仕事を変える

学習時間はなぜ難しい? 今回の勉強は、以前のデータ分析の際とは異なり、毎朝コツコツと学ぶ時間を確保することが難しく、順調に進めることができませんでした。一方、実務で自然に意識していた内容が学びの一部に反映され、知識の整理に役立ちました。その結果、全体としては勉強になったと感じています。 グループ参加はどう感じる? また、グループワークへの参加については、後から参加したほうがよかったと反省しています。今後は、初めから積極的に関わることで、より多くの視点を取り入れたいと考えています。 問題の解決策は何だろう? さらに、問題解決に没頭してしまいがちな反省もあります。なぜその問題を解決する必要があるのか、根本的な問いを持つことに意識を向け、アプローチを見直すことが必要だと感じました。加えて、人に伝えることにまだ苦手意識があるため、伝え方の手法をさらに学び、業務に生かす努力を続けていきたいと思います。 知識はどう実践する? 前回受講したデータ分析の勉強と今回の学びを組み合わせ、より深い知識として業務に実践していくつもりです。今後も、言いたいことを明確にする思考法や伝え方の訓練を続け、日々の業務に活かしていきたいと考えています。

データ・アナリティクス入門

仮説×検証で広がる未来

仮説と検証はどう? 問題解決の4つのステップの一環である原因の分析について、まず、原因を突き止めるためには仮説を立て、その仮説を実際に検証する必要があります。この検証のために必要なデータを収集し、フレームワークなどを用いて多角的な切り口からデータを引き出すことが大切です。また、解決策の一つとして、WEB上での施策検証に適したA/Bテストが有効です。 データ設計の秘訣は? さらに、現在の課題に必要なデータをどのように設計するかという視点を持つことも重要です。たとえば、共に仕事をするメンバーや経営層に対して、データに基づく裏付けがきちんと説明できるようにすることや、判断を求められた際に感覚的な決断ではなく、しっかりと分析した上で判断できるかどうかを見極める力が求められます。 経験共有の意義は? 皆さんには、業務上で判断に困ったとき、どのようなデータ分析を行って助かったか、あるいは失敗した経験について共有していただきたいと思います。また、最後の最後には勢いも必要ですが、どの程度の分析を行えば十分なのか、自分自身が満足するまで分析すべきか、あるいはどのような基準を持つべきかについて、みなさんと議論してみたいと考えています。

「データ × ワーク」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right