クリティカルシンキング入門

データ分析で見つける、次の一手

分析の進め方はどう? 目の前の数字だけで判断しがちですが、一歩踏み込んで分析することで、より詳細で解像度の高い状況にたどり着ける可能性があることが分かりました。情報の収集とその情報の分析に工夫を加えることの重要性を学びました。 データ活用に自信は? 問い合わせ者データや来場者データ、購入者データなど、さまざまなデータを保有していますが、これらを有効に活用できていないかもしれないという良い意味での疑念を持ちました。それぞれのデータを分析して歩留まりの数や率を向上させるため、具体的な施策を行っていますが、より効果的な施策を実現するために、各段階での分析作業を実施する必要があると感じました。 改善点は見えてる? アンケートデータの分析(分解)を通じて、改善点を効果的に導き出すことができそうです。実施予定の施策の効率や効果性を向上させることができれば、得られる成果を今より大きなものに変えられるかもしれないと実感しました。

データ・アナリティクス入門

ギャップを超える成長日記

無意識の決めつけは? 現在担当している業務では、欲しい回答を得るために無意識に決めつけをして分析や結果報告をしている可能性があると感じました。今後は、「モレなくダブリなく」の原則に基づいて、再度見直しを実施していきたいと考えています。また、問題解決は単にマイナス面を改善する対策だけでなく、あるべき姿とのギャップを明確にして、そのギャップを数値で示しながら埋めることが重要であると改めて実感しました。新サービスの社内展開においても、従来のアプローチでは行き詰まりを感じていたため、この考え方を取り入れて対応策を検討していこうと思います。 現状とのギャップは? 今後は、社内で提供しているサービスや新たに展開を進めるサービスに対して、まずあるべき姿を明確に定め、現状とのギャップを具体的に示します。その上で、ロジックツリーなどを活用し、問題をモレなくダブリなく分解することで、あるべき姿に向かって着実に対応策を進めていく所存です。

データ・アナリティクス入門

自分に合った改善のヒント

どこに課題が潜む? 今回の講義を通して、課題の把握と改善のプロセスを具体的に理解することができました。どの段階に課題が潜んでいるのかを明確にし、改善策を講じる際には、単に取り組むのではなく、状況を比較しながら検証することが重要だと実感しました。 どのプロセスが効果的? また、最終ゴールに向かう各プロセスを数値や成果で把握し、どこに最も効果が得られるのかを検討する必要があると感じました。A/Bテストのような手法を用いて、具体的な改善状況をモニタリングしながら継続的な改善を進める体制の構築が求められると捉えています。 どうチームで共有? まずは、自身の業務における最終ゴールに向け、対象者のプロセスを整理して見える化し、改善すべきポイントを洗い出すことが大切です。その上で、実施可能な箇所でテストを行い、プロセス全体と改善の手法についてチーム全体で共有し、全員が理解できるようにすることが必要だと考えています。

データ・アナリティクス入門

ヒストグラムで読み解く営業戦略

平均の捉え方は? これまで、平均値については単に合計を個数で割るだけの計算に留め、データのばらつきにはあまり目を向けていませんでした。加重平均や標準偏差といった考え方は知っていたものの、実際の活用方法については具体的なイメージが薄かったため、今回の講義でその使い方を理解することができました。 顧客層の把握方法は? この学びを自分の業務に活かすため、地区全体の顧客売上データをヒストグラムで区分し、顧客層ごとの購買力を把握する手法に注目しました。顧客の売上ランクごとに適切な営業施策を検討し、個別にアプローチできる可能性を感じています。 実践で効果は? 具体的には、まず売上データを取得し、実際のヒストグラムを作成して区分を始めます。その上で、各区分ごとに合わせた営業施策の計画と実施を行い、売上数字の定点観測で変化を読み取ります。このプロセスにより、施策の効果を判断し、次の戦略検討に役立てる予定です。

データ・アナリティクス入門

仮説が開く新たな視野

どうやって仮説を立てる? 「仮説を立てる」ことの大切さとして、まず、3Cや4Pなどの関連フレームワークを用いることで、偏った視点に陥らずに物事を捉えることができる点が挙げられます。仮説を設定することで、問題解決へ向けた具体的なアプローチが見えてくるだけでなく、説得力のある説明が可能になると感じました。結果として、自身の意識が向上し、業務のスピードアップや行動の精度の向上に繋がると実感しています。 偏った視点をどう変える? 既存の業務では、どうしても問題解決の視点が偏る傾向にありました。そこで、関連フレームワークの活用が、より広い視野に立った提案に結びつくと思います。まずは、現在抱えている事業の課題に対し、既存情報と新たに必要な情報を整理するところから始めました。必要に応じて関係部署へのヒアリングや、他の事例の調査も実施し、その結果をもとに、より具体的で説得力のある提案へと発展させることを目指しています。

データ・アナリティクス入門

数字で読み解く採用の秘密

データ比較の留意点は? データの比較アプローチには、大きく分けて2つの方法がある。1つは、1つの数字に集約して評価する方法、もう1つはデータをグラフ化して視覚的に捉える方法である。 数字集約の意義は? 数字に集約する方法に関しては、加重平均、幾何平均、標準偏差といった手法があり、今回初めて耳にしたため、新たな数値の捉え方を学べたのが印象的だった。 採用分布は何が見える? また、採用が決定した方と不採用となった方の現年収およびオファー年収の分布を可視化することで、採用決定や辞退に関する傾向が明確になる可能性を感じた。 今後のヒアリングはどう? 今後の選考では、現年収、希望年収、最低希望年収についてヒアリングを実施し、データを着実に蓄積していく。また、他社で採用が決定しながら辞退に至った方からも決定年収についてヒアリングを行い、自社のオファー年収との比較ができるように進めていきたい。

データ・アナリティクス入門

実践と洞察で未来を拓く

実践学習の効果は? 学習内容を実践的に活用しようとする姿勢が素晴らしく、データ分析においてもその洞察力が十分に発揮できると感じました。今後は、可能性や必要なデータをより具体的に整理していくことで、さらに充実した学びに繋がると思います。 市場環境の見直しは? また、現状の市場状況や競合環境を鑑み、製品サイクルを考慮した上で複数の課題を明確にすることが重要だと感じました。優先順位を明確にし、実現可能な対策を現場と共に検討・実行していく中で、どのようなチェックポイントが必要になるのかも考えていきたいと思います。 部内議論の方向性は? さらに、まずは部内で現在考えている課題を洗い出し、複数の案を出し合う場を設けると良いと感じました。その上で、今後の進め方についてマーケティングや営業の各方面とも相談しながら、各自の役割分担を実施して課題解決に向けた取り組みを進めていくことが望ましいと考えます。

データ・アナリティクス入門

数値に隠れた学びの秘訣

単純平均で十分? まず、単純な平均値の算出だけでは誤解を招く結果になる可能性があると感じました。標準偏差を用いた分析、加重平均の導入、さらには外れ値を除外して計算するなど、数値として意味のある手法を用いる必要があるという考えに至りました。 NPS集計はどう変わる? また、問い合わせ対応後に実施しているNPSの集計についても、状況に応じた評価が重要だと考えます。障害発生時のNPSスコアと、通常の問い合わせ時のスコアが大きく異なるため、障害などの背景情報を考慮に入れて集計した方が適切であると思いました。 状況別スコアの信頼性? さらに、NPSの回答スコアは状況によって変動するため、その状況に関する詳細な情報を併せて提示し、分析の軸として活用することが望ましいと感じています。どのような状況でどの集計方法が最適かを試行錯誤しながら、知識とスキルを磨いていきたいという思いが伝わりました。

戦略思考入門

差別化で自社の未来を切り拓く!

競争優位性の重要性とは? 自社の経営戦略を考える上で、競争優位性を維持するためには差別化が重要であると学びました。特に自社の強みを網羅的に分析するには、VRIO分析が効果的であることを理解しました。 VRIO分析の役割は? また、VRIO分析は来年度以降の事業戦略や営業戦略を検討するうえで非常に有益なツールであると認識しました。顧客との会話で、なぜその商材が必要なのかを深掘りしてヒアリングする際にも、差別化という視点を持つことで、新たな視点から情報を整理できると思いました。 差別化要素の再整理計画 今後は、まず2月中にVRIO分析を実施し、差別化要素を再整理したいと思います。その後、足りないケーパビリティを補うための活動を実践します。さらに、差別化要素の持続的可能性を向上させるために、日本人だけでなくローカルスタッフを巻き込み、要素維持が可能な環境を整備したいと考えています。

クリティカルシンキング入門

分解力で誤解を防ぎ、データ活用スキルを伸ばす

分解法は正しい? 分解することで原因の特定が容易になることを学びました。しかし、分解の過程では、常にその手法が正しいか自問することが重要です。そうしないと、分解したデータに誤った解釈をしてしまい、思い込みによる原因の特定につながる可能性があります。 売上の分析はどう? 売上を算出する際には、その目的を明確にしたうえで、効果的な視点からアプローチすることが大切です。これを意識せずに進めると、成果に結びつかないことがあると学びました。したがって、意識的に効果的な算出を心がけます。 報告の伝わり方は? また、売上算出にはデータ抽出の明確な目的を持ち、その目的に沿った効果的な切り分けを実施します。さらに、その算出結果を上司に確認してもらい、伝えたい内容が明確に伝わっているかを検証します。わかりにくい点があれば、その都度改善を行っていきます。

データ・アナリティクス入門

小さな検証がもたらす大発見

A/Bテストはどう活かす? A/Bテストの手法を学ぶ中で、基準を揃えた上で複数のパターンを試し、比較検証することの重要性を実感しました。また、A/Bテストに限らず、比較を行う際には条件を同一にすることが必要であると感じています。 仮説検証はどう進める? 仮説検証については、小さなサイクルを繰り返すことが効果的だと考えています。月次実績を追いながら、仮説検証を実施し、特に割合の比較を日々の業務に取り入れることで、より正確な分析が可能になると認識しています。 UI/UXはどう評価する? さらに、アプリケーション開発に携わる立場から、UI/UXの検討においてもA/Bテストの手法を積極的に活用していきたいと思います。現業務で実際に数値をもとに比較を行っている経験を踏まえ、今後も引き続きこのアプローチを継続し、業務改善に生かしていく所存です。

データ・アナリティクス入門

数字が導く学びの実験室

ボトルネックはどこ? データをプロセスごとに分解してボトルネックを特定すると、問題の把握が容易になります。各フェーズの転換率を算出することで、定量的にボトルネックを明らかにでき、値が異なった場合でも率に統一して比較することが可能です。また、ある仮説とその対概念にあたる仮説を併せて検証することで、思考の幅を広げ、複数の仮説を判断基準に基づいて評価し、絞り込みを行います。 A/Bテストで何が? A/Bテストでは、比較するグループ間の介入の違いをできる限り絞り込むことが求められます。これにより、広告のA/Bテストや販売実績の評価において、クリエイティブにどの要素が反映されるべきかを具体的に検討できます。施策をプロセスごとに分解し、定量的な評価を実施することで、成功要因や失敗原因を明確にし、次の改善策の立案に役立てています。

「実施 × 可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right