データ・アナリティクス入門

仮説検証が開く未来への扉

原因究明の方法は? 問題の原因を探る場合、詳細に分けて確認しボトルネックを明確にすることで、問題の把握が容易になると感じました。 A/Bテストって有効? また、A/Bテストの概要とその活用方法について学ぶ中で、短期間で仮説の検証と効果測定が可能であること、さらに実際にある国の大統領選挙でも用いられていた実例から、有用性の高さを実感しました。 顧客接点をどう増やす? 担当顧客をセグメントに分け、各セグメントごとにデジタルを活用して顧客とコミュニケーションの機会を生み出す取り組みも印象的でした。例えば、メルマガ配信では、メールのタイトルや構成が開封率やクリック率にどう影響するかを比較する際に、A/Bテストが効果的に活用できそうだと感じました。 テスト後の活かし方は? 実際にA/Bテストを行う際は、1要素ずつ変更し、同一期間でのテスト実施により正確な効果測定ができるよう学んだ内容を参考に実践しています。実施後は、単にテストを終えるのではなく、振り返りの分析をしっかり行い、その結果を次回のテストに活かすことで、継続的な改善につなげています。

データ・アナリティクス入門

データ分析の新しい一歩を踏み出す

データ分析の基本とは? データ分析とは、単なる集計ではなく、比較を通じて意味を引き出すことです。具体的には、有意義なデータを比較し、仮説を立て、その仮説を検証するために、比較対象以外の条件を可能な限り一定に保ちながらABテストを実施することが求められます。 エンゲージメントを高めるためには? データ分析においては、適切な情報を選別することが重要です。例えば、SNSコンテンツのオーガニックポストのエンゲージメントデータを見ることで、どの国でどのようなコンテンツが注目されているかを理解することができます。その上で、さらに具体的に、投稿の時間帯やフレーズ、サムネの違いに焦点を当てたテストを行うことで、より効果の高い手法を見つけることが可能となります。 データの傾向を見極めるには? したがって、データの比較を深め、傾向を分析することに時間と労力を割く価値があります。決まった時間にインサイトをモニタリングし、データの傾向を知る時間を計画的に設けることが大切です。これにより、仮説を立て、有意義な投稿テストを実施することで、より深い知見を得られるでしょう。

データ・アナリティクス入門

数字に潜む新発見と未来への一歩

平均値の使い方は? 単純平均だけで判断すると、外れ値の影響でデータの見誤りが発生する可能性があることに気づきました。これに対して、加重平均や幾何平均についてはこれまで自分自身で使った経験がなく、今後習得していきたいと考えています。これまで、適材適所の数値の出し方をあまり意識していなかったという反省もあります。 データ分析はどう? セミナーの申込者数やWebからのコンバージョンの分析において、年商別や案件化金額などのデータを、散らばりや加重平均、幾何平均を取り入れて比較分析したいと考えています。具体的には、同じソリューションのセミナー同士や異なるソリューション間の比較、時期を分けた比較、Webとセミナーでのリードの比較など、さまざまな切り口で分析を行いたいと思います。 比較検討の進め方は? まずは、参加者が多く、分析しやすい直近のセミナーを対象に、年商別の申込者数や過去のセミナー参加数を、前回同じテーマで実施したセミナーと比較してどのような変化があるかを検討する予定です。その結果を踏まえ、他のソリューションのセミナー分析にも展開していく狙いです。

戦略思考入門

フレームで拓く戦略の見える未来

現状はどう整理する? 戦略を考える出発点は、まず内部と外部の現状を俯瞰して整理し、正しく把握することにあります。実際の事例から、私たちは目の前の出来事や直近の経験に影響され、偏った見方をしてしまうリスクがあると実感しました。そのため、フレームワークを活用して抜けや漏れなく現状分析を行う重要性を再認識しました。 業界状況をどう見る? また、PEST分析を用いて業界全体が直面する状況を整理し、その上で3C分析を通じて今後の勝ち筋を見出すことに大きな可能性を感じました。中長期的な戦略を立案する過程では、バリューチェーン分析を活用し、自身が所属する製造部門が提供しているユニークな価値について深く考える機会となりました。 分析実践はどう進む? 具体的には、PEST分析を実施して税制の変化などの業界に影響を及ぼす要因を整理し、その影響を製造部門における各プロセスに反映させる方法を検討します。また、バリューチェーン分析の実践例を参考にしながら、どのような付加価値が生み出されているのかを体系的にまとめることで、今後の戦略立案に役立てたいと考えています。

データ・アナリティクス入門

小さな疑問から大きな発見へ

何故課題意識は必要? 分析の目的や課題意識を明確にすることで、日常の業務だけでなく、普段目にする分析データについても「なぜ?」と考える習慣が身につきました。例えば、ニュース記事で医師不足が取り上げられる場合、その背後にある分析の意図や解決すべき課題を自分なりに考察するきっかけとなりました。 施策評価はどう? また、業務で複数の施策を企画・実行する中で、効果を評価するための分析が重要だと感じています。中長期的な戦略の実行に際し、連続性のある施策を実施するためにも、小さな施策のブラッシュアップを繰り返す必要があると考えています。たとえば、アプリへのログインプロセスを細かく分解し、特に初回ログイン率の向上に向けた分析を進めています。 情報取得は万全? さらに、戦略立案の段階から必要な情報やデータが適切に取得できているかを精査し、取得できていないデータにはタグ付けなどの対応を実施して、常に分析が可能な状態を作り上げています。同じ条件で定期的にログの確認やレポート作成を行う仕組みを整備することで、継続的な定点観測が可能になりました。

データ・アナリティクス入門

チームで切り拓く未来への一歩

データ検証の意味は? データを検証し、仮説を立てた上で再びデータを確認する―リスクを抑えながら新たな可能性を模索する問題解決のプロセスについて学びました。その中で、A/Bテストの活用についても知ることができました。 実践規模の見極めは? 仕事に活かす方法として、プロセスをどの規模で実施するかが、データ抽出の視点や意思決定の重要度によって左右される点に気付かされました。企業の規模によっては、実行が難しい場合も出てくると感じました。 チームでの一歩は? そこでまずは、自分のチーム内で進められる範囲から取り組んでみようと思いました。 チーム育成のポイントは? チーム内での人材育成プロセスに、データの検証と仮説の立案を取り入れ、今後の計画に反映させたいと考えています。近年、チームメンバーとなる人の出身部署が多様化しているため、前提となる知識やその特性にも違いが出ていると感じます。これにより、それぞれの出身部署や知識の有無を的確に把握し、最終的には一人前のチームメンバーとして成長するプロセスを、より効率的に進めたいと思います。

戦略思考入門

経営者視点で広がる新たな戦略

経営視点の重要性は? 大局的な視点で物事を見ること、そして経営者の視点で考えることが非常に重要であると学びました。どうしても自部署の視点に偏りがちですが、最終的な決裁は上長から経営者に至るため、彼らに納得してもらえる結論を導くことが必要です。そのため、短期的なゴールにとどまらず、それが会社全体にどのように貢献するのかを明確に文字にしたいと思います。 意見をどう取り入れる? また、他人の意見を積極的に取り入れることを意識しています。個人での業務が多いのですが、全社に影響を及ぼす可能性が高いため、計画段階から自分以外の視点を追加するよう努めたいと思います。特に競合分析については現場のメンバーがより詳しく見えている場合が多いため、一緒に計画を立てる方法で進めていきたいと考えています。 計画はどう整える? 実際の教育計画において、情報や意見を集める機会を設けたいと思います。さらに、社長や経営層からも意見を聞く場を作り、計画におけるずれがないか確認することで、計画の完成度を高め、実施の際には協力を得られるようにしたいと考えています。

戦略思考入門

現状に挑む!業務改善のヒント

今のプロセスは最適? 現状への最適解を追求することの重要性を再認識しました。現在の業務は多くがプロセス化され、一定の手順に従って進められていますが、その一方でプロセス化によるオーバーヘッドが生じていることも改めて感じています。常に「今の対応が本当に最適なのか」という疑問を持ち、業務の見直しを図ることが大切だと考えています。 手順は見直す? これまでの問題への対応として、手順を確立し日常のオペレーションに組み込んでいます。しかし、定期的なプロセスの見直しやメンバーからのフィードバックを受け、各プロセスの必要性や効率を再評価するよう意識を変える必要があると感じています。 自問自答してる? まずは以下の点について自問自答してみたいと思います。 ・そもそもなぜそのプロセスが必要になったのか、当時の背景を十分に理解する ・現在の状況が当時とは異なる場合、対応すべき最適解が変わる可能性があるため、現状の必要性を検討する ・プロセスで実施している作業を、他のツールやソフトウェアなどの手段で代替できないかを検討する

データ・アナリティクス入門

WHYを追う!仮説×データの挑戦

仮説検証で何が分かる? ライブ授業では、WHAT⇒WHERE⇒WHERE⇒HOWの順番に沿って、適切な仮説を基にデータ検証を行う重要性を再認識しました。以前学んだクリティカルシンキングにおける問題解決のステップと共通点が多く、両者の関係性がよく理解できました。仮説検証のプロセスにデータ分析を組み合わせることで、より良い課題解決や提案が可能になると感じています。 内部監査にどう活かす? この考え方を、私自身の内部監査業務にも取り入れ、問題の核心に迫る質の高い改善提案を実現したいと思います。特に、これまであまり重視してこなかったWHYの分析については、今後、的確に問題の真因を把握するために、重点的に実施していく予定です。 MECEで本質をつかむ? また、課題に対して決めつけず、全体をMECEの視点で捉えながら不要な部分と深堀が必要な部分を明確に区別したいと考えています。深堀が必要な箇所については、改めてWHAT⇒WHERE⇒WHERE⇒HOWのステップを踏み、考えを可視化して説明できるよう努めることが大事だと実感しました。

データ・アナリティクス入門

売上低下の真因を明らかにする分析術

総復習で得た新たな視点とは? 今までの講義の総復習だったので、各パーツで学んだ内容を一連の流れとして把握できました。仮説、網羅的思考、目的の設定、見せ方、分解など、分析の知識と新たな思考法を学ぶことができました。また、結果をイメージした分析の重要性も体感することができました。 なぜ売上が思わしくないのか? 現在、売上が思わしくないため、きちんと目的を持った分析、原因の追究、仮説・検証の繰り返し、そして網羅的な思考を意識して業務に取り組みたいと考えています。さらに、定性的な言葉と定量的なデータを組み合わせることで、説得力のある提案ができるようにしたいです。 今後の施策にどう活かす? 売上が上がらなかった理由については、いくつかの仮説があります。まずはこれを基準に分析を行い、それに加えて網羅的な仮説も追加して多角的な分析と提案を実施していきます。原因の追究を行い、今後の施策に活かすことが重要です。また、数値がなくても、今回学んだ思考は応用可能な部分があると思うので、売上の改善に役立てていきたいと考えています。

データ・アナリティクス入門

仮説実証で未来を切り拓く

どうやって目的を決める? 目的や目標を明確に定めた上で、必要な判断を下すための着眼点を学ぶことができました。事象におけるステップや因果関係を意識し、まずは分析の仮説を立て、その後実際のデータ解析を通じて検証しながら、問題を絞り込む手法が有効であると理解しました。 どう検証すれば確実? 問題解決型の業務においては、事前に予想される因果関係を各種ツールを用いて整理し、データで検証することで、より正確な判断を短時間で行うことが可能だと感じています。一方、課題創造型の業務では、目的と背景を基にツールなどを活用して仮説を組み立て、実践と検証を繰り返すことで、より良い業務実施につなげる方法があると考えます。 どう計画を固める? 改めて、まずはしっかりと目的と目標を決めることが重要だと感じました。関係者を巻き込み、十分な時間をかけて納得のいくプランを作り上げ、その上で複数の仮説を立てる必要があります。また、各種分析手法を実践する中で自分のスキルと経験を徐々に深め、より多角的な判断ができるようになりたいと考えています。

戦略思考入門

異業界分析で見える未来戦略

3CとPEST分析はどう活かす? 私は戦略立案の際、主に3C分析を実施しています。特に市場と顧客についてはPEST分析も取り入れ、バリューチェーンの観点から、自身の業界だけでなく他業界も分析しています。その際、各業界の特徴や流行に注目し、視野を広げるよう努めています。 上位者の意見はどう反映する? また、戦略や事業計画の立案にあたっては、他業種の分析を組み合わせることで、業界特有の要因とタイミングによる変動を明確にし、方向性を判断しやすくすると考えています。その上で、上位者の意見を参考にすれば、より深い議論が可能になると思っています。 毎月の業界分析はどう進む? さらに、市場・顧客および競合環境の変化が激しい状況下でも、特定の業界に限定せず、興味を持った業界のバリューチェーンや3C分析を実施し、その成果をワークとして形に残していきたいと考えています。具体的には、毎月1業界を対象に分析を行い、業界全体の理解を深めるとともに、第三者からのフィードバックを受けられるように取り組んでいます。

「実施 × 可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right