デザイン思考入門

共鳴する学び、未来を拓く

多様な視点は? 受講生の皆さまの多様なアイディアや着眼点に触れることで、自身の課題への向き合い方を改める大きなきっかけとなりました。生成AIの活用事例からは、自らの業務に活かすヒントも得られ、非常に刺激を受けました。また、デザイン思考のプロセスでは、各段階での発散と収束のバランスが最終的な施策やテスト段階に大きく影響するという点が印象的でした。 課題の改善方法は? 自身の課題に対する取り組み方を見直し、ほかの受講生からの多彩なアイディアを学ぶ姿勢は非常に有益です。さらに、生成AIの業務への応用意欲や、デザイン思考の各プロセスの深い理解が、今後の成長につながると感じています。 思索の問いは? 以下の問いを自分自身に問いかけ、さらに思考を深めたいと思います. ・デザイン思考のプロセスで、効果的な発散と収束を実現するためにはどのような手法が考えられるでしょうか? ・ほかの受講生から得た学びを、具体的にどのように自身の業務に応用できますか? 他者の意見は? 他者のアイディアを参考にしながら、自分の業務にどのように反映させるか具体策を考えることが重要だと感じました。 授業の学びは? 講義を通して、以下の5点を特に意識したいと考えるようになりました。 重要な意識点は? ① 顧客のニーズや課題を深く理解するため、学んだインタビュー手法を活用し、顧客の立場から感情や期待を把握することで、解決すべきペルソナの解像度を高める。 ② チームでの業務において、ブレーンストーミングなどを積極的に取り入れ、自由な発散により多角的な解決策を模索する。 ③ 提案するアイディアを簡易的に形にまとめ、実際に試してみることで、より良いブラッシュアップの機会を確保する。 ④ ダブルダイヤモンドの考え方をもとに、継続的な改善・改良を繰り返し、顧客の反応や市場の変化に柔軟に対応する。 ⑤ 自身で商品を開発する立場ではないからこそ、異なる部門とのクロスファンクショナルな連携を重視し、情報共有を通じてより良い企画創出を目指す。 企画の目的は? 現在、志望理由書作成に関する指導提案のイベント企画に取り組んでおり、特に高等学校3年生を対象とした指導提案を予定しています。この企画では、高3生をはじめ、保護者や教員の行動や感情を詳細に把握するため、担任、生徒、保護者へのインタビューやアンケート調査などを実施する予定です。 今後の提案は? ヒアリングで得た情報は、イベントの目的やテーマを明確にした上で整理し、企画の焦点を固める材料とします。そして、解決策のアイディアはイベント企画チームでブレーンストーミングやKJ法、その他フレームワークを活用しながら、より効果的な提案へと昇華していく方針です。

データ・アナリティクス入門

仮説で読み解くデータの裏側

仮説の意義は? 今週の学習では、どんな状況においても仮説を立てることの重要性を再認識しました。仮説はデータ分析や問題解決の道しるべとなり、何を調べ、どんな情報を収集すべきかを明確に示してくれます。また、代表値だけでデータの全体像を把握するのではなく、その背後にあるばらつきにも目を向ける必要があることを学びました。平均値は全体を簡潔に表す指標ではありますが、ばらつきを加味することでデータの実情をより深く理解できるという点が印象的でした。 データ把握はどう? データの分布を視覚的に把握するためにはグラフを活用することが有効です。ヒストグラムを用いれば分布の様子が、散布図を用いれば2つのデータ間の関係性が直感的に読み取れます。また、標準偏差を理解し算出することで、データのばらつきを定量的に捉え、より正確な分析が可能になるという点も学びました。これらの学びは、特に患者の受診動向分析の現場で大いに役立つと感じています。 具体計画は? 具体的な行動計画としては、以下のステップを実施する予定です。 1. データ収集と整理  ・受診データの抽出:電子カルテシステムから必要な情報を取り出す。  ・データクリーニング:欠損値や誤りがないか確認する。  ・データ加工:分析しやすい形に整える。 2. 仮説構築と検証  ・仮説リストを作成:過去のデータや経験を踏まえ、受診動向に関する仮説を立てる。  ・データ分析:収集データを基に仮説の正否を検証する。 3. 代表値の吟味  ・複数の代表値の算出:単純な受診者数だけでなく、年齢層別、性別、居住地別に平均値や中央値、最頻値などを計算する。  ・代表値の比較:異なる代表値を比較し、データの傾向を把握する。 4. 可視化  ・グラフ作成:受診者数の推移やデータ分布をグラフで表現する。  ・グラフ分析:作成した図表から季節変動やパターンを読み解く。 5. 標準偏差の活用  ・各診療科ごとに受診者数のばらつきを標準偏差で算出する。  ・科ごとの差異を比較し、正確な分析に役立てる。 6. 分析結果の活用  ・傾向の把握:得られたデータから受診動向の傾向を明確にする。  ・対策の検討:把握した傾向を元に、より良い医療サービスを提供するための対策を議論する。  ・情報共有:分析結果や検討内容を関係部署で共有する。 7. 行動の継続と改善  ・定期的な分析:定期的な受診動向の確認により、新たな傾向や変化を捉える。  ・行動計画の見直し:状況の変化に合わせ、計画を適宜更新する。 各ステップを着実に実行することで、学んだ分析手法を実務に効果的に活かしていきたいと考えています。

リーダーシップ・キャリアビジョン入門

具体的フィードバックで築く信頼

面談の具体は? ロールプレイを通して、効果的な面談に必要な留意点を学びました。面談では、抽象的な印象ではなく具体的な事実に基づいて伝えることが信頼関係の土台となります。また、メンバーが直面している困難や苦労に共感することで、心理的安全性を保つことが大切だと感じました。自分自身や環境の不足については、素直に非を認め、誠実に対応する姿勢も重要です。 どんなフィードバック? フィードバックの際は、良かった点と改善が必要な点を具体例とともに明確に伝えることで、建設的な対話が生まれます。一方的に指示を伝えるのではなく、相手自身が気づきを得られるような質問を取り入れることで、自発的な振り返りと成長支援につながると理解しました。 成長支援の鍵は? 部下や同僚との1on1では、相手の課題に共感し、具体的な事実をもとにフィードバックを行うことで、効果的な成長支援が可能だと考えます。また、プロジェクト進行中に障害が発生した際は、自身の責任を認めた上で解決策を提示することが信頼を生み出します。会議においても、「どうすれば改善できるか」といった質問を通じ、参加者の当事者意識を高めることができると実感しました。 信頼感はどう築く? これらのコミュニケーションスキルは、チーム内の心理的安全性向上と業務効率化の両面に貢献すると考えています。 日常の準備は? まず第1段階として、日常的な関係構築から準備を始めます。チームメンバーとのカジュアルな会話を通じて、各々の価値観や性格を理解することが基盤となります。また、定期的な1on1面談の時間を確保し、フィードバック時に具体的な事実を記録する習慣をつけることも有効です。さらに、自己の感情や反応パターンを認識し、冷静に対応できる自己調整能力を養うことが必要です。 対話実践の秘訣は? 次に第2段階として、実践とスキルの適用に取り組みます。実際の対話の場では、まず相手の話にしっかりと耳を傾け、「〜と感じているのですね」といった言葉で共感を示します。その上で、具体的な事実や観察に基づいたフィードバックを「〜という場面で、〜という行動がありました」と伝えます。問題が発生した場合には、「私の〜という点が至らず」と率直に責任を認めた上で、建設的な解決策を提案する姿勢が求められます。 振り返りと改善は? 最後に第3段階として、対話後の振り返りと継続的な改善を行います。各対話後に、相手がどのように受け止めたか、効果的だった点や改善すべき点を自己評価し、相手からのフィードバックも積極的に取り入れます。成功体験を記録して自信につなげるとともに、定期的に関連書籍やトレーニングで知識をアップデートし、長期的なスキル向上を目指していきます。

マーケティング入門

顧客ニーズを見抜く!ビジネス成功の鍵

顧客ニーズをどう把握する? 商品を何にするかを決める際に最も大切なのは、やはり顧客のニーズを把握することです。「それは当然だ」と思われるかもしれませんが、いくつか重要なポイントがあります。 まず、顧客自身がなぜその商品を購入したのか、あるいは欲しいと思ったのかを自覚していないケースが多いということを理解する必要があります。次に、ウォンツとニーズの違いを正確に理解することも重要です。ウォンツとは、ある特定のものを欲しいと思う状態で、顧客自身が自認しているため、競合による価格競争が起きやすくなります。一方、ニーズは満たされていない状態があり、それを解決したいと思っているものの、顧客自身が認識していないことが多いです。ニーズを捉えることができれば、それがビジネスチャンスにつながる可能性が高まります。 ペインポイントをどう見つける? このための手法も理解する必要があります。ウォンツを捉えるには、アンケート調査や購買データの分析が有効です。一方でニーズを捉える手法としては、顧客にインタビューを行い、様々な視点からの質問を通じて心理を掘り下げる方法や、顧客の行動を観察して商品の利用状況を見る方法があります。また、カスタマージャーニーを描くことも有効です。 事業を成功させるためには、顧客が困っているポイント、つまりペインポイントを見つけ出すことが第一歩です。しかし、それは容易ではありません。そのため、手法については理解を深め、実践の中で改善していくことが重要です。 顧客との信頼構築法とは? 顧客のペインポイントを探る手段として、定期的なコミュニケーションが欠かせません。顧客の困りごとは時の流れとともに変わっていくため、常に新しい情報をキャッチアップし、変化を把握するように努めます。 さらに、会社の強みとして柔軟に企画化できる点を活かし、見つけたペインポイントに対して企画に昇華できるものがあれば、すぐに素案を作成し、顧客に提示して反応を見ます。好反応が得られれば、迅速に実行することを繰り返していきます。 効果的なチームコラボの秘訣は? また、営業やマーケティングメンバーとの定期的なミーティングを通じて、各メンバーが顧客から引き出した困りごとをシェアします。この中で、具体的なアクションプランについてもアイデアを出し合い、すぐに実行に移していきます。 デプスインタビューの極意 最後に、インタビューのスキルを高めることも重要です。デプスインタビューは難しいものですが、それをこなすにはどの情報を広げ、どの深さで掘り下げるかといったガイドラインが必要です。このスキルは自分自身で率先して学び、その知見をメンバーに共有することでチーム全体のスキル向上につなげます。

デザイン思考入門

自分も受講したい!共感ステップの実践

なぜ共感が大切? 「共感ステップ」では、単なる情報収集にとどまらず、ユーザーの課題や背景を深く理解し、求める解決策を的確に見極めることが重要であると学びました。現在取り組んでいるワークショップ形式の研修デザインにおいても、受講者の視点に立ち、彼らが何を感じ、何を求めているのかを探るプロセスに重点を置く必要があると考えます。例えば、研修設計の段階で自ら受講者となって演習を体験し、ショートケースの妥当性や適切な所要時間を確認すること、また事前アンケートにより受講の狙いや期待を把握することで、表面的なニーズだけでなく本質的な課題も見極めることができると実感しました。 どう適用する? 共感ステップについて、具体的な研修デザインへの適用方法をよく考えられている点は非常に印象的です。より多くの受講者の視点やニーズを探るアプローチを試みることで、さらに多面的な理解が得られると感じます。 どの調査が有効? また、受講者の背景や課題を深く理解するために、どのような追加の調査手法が有効か、そしてワークショップデザインで共感をさらに深めるためにどのような方法を試すべきかを考えることも有意義だと思います。 どう設計すべき? 事前アンケートの実施や自身での演習を通じて、以下の点が重要であると改めて認識しました。まず、受講者のペルソナに応じた研修の難易度設定とシナリオ作成です。受講者の職種、経験年数、課題意識を踏まえ、適切なレベル感で研修を設計し、理解しやすいストーリー展開を意識することが求められます。次に、説明資料の粒度と所要時間のバランス調整が重要です。受講者の集中力や理解度を考慮し、必要な情報を適切なボリュームで提供するとともに、講義とワークの時間配分を最適化する工夫が必要です。さらに、ワークの難易度設定と題材設計については、受講者が主体的に考え、実践的なスキルを習得できるよう、初心者でも取り組みやすく、発展的な応用が可能な内容を用意することが大切です。 どう改善する? 今後も、受講者の視点に立ち、実際の学びにつながる研修デザインを追求していきたいと考えています。今週は、共感ステップの実践を通じて、ユーザー理解の深め方について学びました。現場に足を運び、ユーザーの行動や発言を客観的に捉える「現場観察」と、自らが取り組む中で感じる感情や視点を体験する「参与観察」との違いが印象に残り、これらの手法を組み合わせることで、ユーザーの潜在的なニーズや課題の本質を見極めるための深い分析が可能になると感じました。今後は、実践の場を通じて共感ステップをより意識的に活用し、受講者視点の学びを深めながら、研修デザインやサービスの改善につなげていきたいと思います。

デザイン思考入門

受講生の声が導く解決のヒント

本質の学びは何? 今週の学びのポイントは、①問題の本質をとらえる、②洞察の整理と可視化、③顧客課題仮説の作成、④ユーザー中心の視点の維持、⑤検証と改善の5点でした。特に③顧客課題仮説の作成は、何となく感じていた課題を「●●は●●という状況で、●●という課題を抱えており、●●という解決策を提供できるのではないか」という形に整理することで、その課題が真に本質的なものかどうか、またその根底にある意図に気づく大きなヒントとなりました。 受講生の視点はどう? 先日、担当しているビジネススクールで、受講生から「自習時に周囲が気になって集中できない」という課題が相談されました。当初は「耳栓を使用してみてはどうか」といった提案をしましたが、今回の学びを踏まえ、これを改めて課題仮説に当てはめてみることにしました。その結果、「受講生は教室で自習する際、周囲が気になって勉強に集中できないという課題を抱えており、簡易パーテーションを設置するという解決策を提供できるのではないか」という形に整理でき、受講生の立場に立った新たな視点に気づかされました。 環境改善の鍵は何? これまで「周りが気になる」という相談に対しては、うるさい受講生への注意や配慮を促す張り紙の掲示など、ソフトな対応を中心にしてきました。しかし、受講生の目線で考えると、簡易パーテーションのような物理的な解決策があれば、より快適な環境が整うことに繋がると感じられたのです。もちろん、実際にそのような取り組みを行うには費用面などのハードルがあるものの、その障壁があったためにこれまで検討の対象になってこなかったと改めて認識しました。 ユーザーの隠れたニーズは? また、今回の学びでは、観察やインタビューを通じて得たユーザーの気づいていないニーズ(暗黙知)や認識しているニーズ(形式知)をもとに、本当に解決すべき課題を定義する重要性を学びました。文字情報の分析や定性分析、コーディング、さらにはKJ法や付箋紙法といった手法を通じて、受講生への共感から本質的な課題を抽出するプロセスが理解できました。初心者は、まず観察から得たメモの中からポイントを抽出することから始めるとよいとのことです。 解決策検討の視点はどこ? 今日の学びとしては、ユーザーの声を素直に受け止め、様々な角度からソリューションを検討する姿勢がいかに重要かを実感しました。ユーザーの話を聞く段階では十分な理解が得られても、実際に解決策を検討する際には、初めから制約にとらわれて選択肢が狭まってしまいがちです。そこで、課題文として整理するステップを設けることは、広い視野を保つ上で意義深いと感じました。

デザイン思考入門

会話から覗く隠れた顧客ニーズ

会話分析で隠れたニーズは? 定性分析について学んだ中で、CRMの管理者として、営業担当が顧客との面談で交わした会話内容をテキスト分析することで、隠れたニーズを発掘できるのではないかと考えました。一人ひとりの顧客に対し、営業担当自身がそのニーズに気づけるCRMシステムが理想です。しかし、そのシステムが効果を発揮するためには、まず営業担当のインタビュー能力を高め、会話内容を漏れなくテキストとして記録する仕組みが必要だと感じました。 研修でどう均てんする? インタビュー能力の均てん化は研修を通じて改善できると考え、記録については音声入力などのテクノロジーが一定の解決策を提供してくれるのではないかと思います。 セグメントの切り口は何? また、顧客のセグメンテーションは売上などの定量的な視点からだけでなく、定性分析を通じてこれまでとは異なる切り口で行える可能性があり、その各セグメントに対する最適な解決策を考えることができると感じました。このため、膨大なテキストデータのコーディング作業が非常に重要だと考え、AIの活用により効率的に対応できるのではないかと期待しています。 システム改善をどう確認する? システム導入については、すぐに実施するのは難しい状況ですが、リニューアルされた別のシステムが以前より使いやすくなったかどうかをチャットベースでのインタビューを通して確認する取り組みも行っています。ただし、単に「使いやすくなった」といった安易な回答に終始せず、具体的にどの点が改善され、どこに課題があるのかを掘り下げる質問をしていくことが重要だと考えています。たとえば、普段どのページにアクセスしているのか、そのページやデータへのアクセスが容易になったかを確認するなど、具体的な視点から質問を設定しています。 利用意義をどう問う? また、システム利用によって本来的に実現したいことに焦点を当てる必要性も感じました。問題点を問うのではなく、見たいデータへのアクセス手順が改善されたか、データがインサイトを得られるように可視化されているか、といった具体的な問いを設定するべきです。ざっくばらんに意見を募ると、後々コーディングして集約する際に混乱が生じる恐れがあります。 仮説構築の秘訣は何? 定量分析が仮説の検証を目的とするのに対し、定性分析は新たな仮説構築を目的とします。コーディングを通じてプロセスやフレームワークを構築することで、これまで想定しなかった要素も明らかになるでしょう。デザイン思考においては、仮説が広範囲になりすぎず、解決策ありきの課題設定を避けることが肝要だと感じました。

データ・アナリティクス入門

逆算で探る課題解決のヒント

結果から問題設定は? 問題や課題を解決するには、ただ漠然と分析するのではなく、まず結果から逆算して問題を設定し、その根本原因を把握することが重要だと学びました。表で示されたデータを図に起こすことで、全体像を俯瞰しやすくなり、どこに課題が潜んでいるかを明確にできると感じました。 数字の裏側は? また、計画値と実績値のギャップが全体にどの程度影響しているかをパーセンテージで示すことは、単なる数字の大小だけでなく、その背後にある要因を突き止め、分析の精度を高める上で有効です。単に数字が大きいという事実に注目するだけでなく、継続して損失が出ている状況など、現場での定性的な情報も加味し、何を最優先で分析すべきかを決めることが大切であると感じました。 分析の切り口は? さらに、すべてのデータが整っているわけではないため、まずはどの切り口でデータ分析を行うか、仮説を立てた上で手元のデータを整理、収集する姿勢が求められます。データに向かう前に、視野を広げ多角的に問題を捉える体制を整えることが鍵となります。 現状と理想は? また、現状(as is)と理想(to be)のギャップを明確にすることが重要です。何を理想とするのか、どこにギャップがあるのかという点を関係者全員で合意することが、問題解決のスタート地点になると理解しました。 解決策の整理は? 問題解決には、改善を目的とするアプローチと、さらなる向上を目指すアプローチの2つがあり、ロジックツリーのような思考整理のツールは、全体を複数の要素に分けて検証する際に非常に役立つと感じました。具体的には、層別分析や変数分析などを駆使して、細部にわたる解決策を検討することが効果的です。 その他の注意点は? 加えて、全体の中で『その他』に分類される割合が大きくなる場合は、データの切り分け方が適切かどうかの見直しも必要です。数値上は少数であっても、影響力が大きい要素には十分な注意を払うことが重要だと思いました。 戦略分析はどう? 広報戦略や施策の検討においても、ロジックツリーなどを活用し、どの視点からデータを分析すべきかを考えることが有効だと感じています。また、ウェブから得たデータを単に眺めるのではなく、具体的な問題や課題を設定し、何を知りたいのかを明確にすることで、分析の精度を大いに高めることができると思いました。 定性情報は何? こうした定量的な分析に加え、定性的な情報も取り入れる事例を学ぶことで、納得感を持ちながら現場の試行錯誤をより深く理解できるようになったと実感しました。

データ・アナリティクス入門

数字だけじゃ見えない分解の力

なぜ全体では見えない? 今週のケーススタディでは、データ分析における分解とプロセスのステップ化の重要性を学びました。最初は全体の満足度を確認したときは横ばいで問題がないように見えたものの、クラス別に分解すると上級クラスでのみ満足度の低下が見受けられ、全体の数字だけでは特定の条件下で発生する問題を見逃す危険性があると実感しました。 コメントと数字の関係は? また、定量データと定性データの組み合わせによって数字の背景にある理由が明らかになる手法も印象的でした。充足率や苦情件数といった数字と生徒のコメントを照らし合わせることで、数字が示す事実に対するより深い理解が得られると感じました。 業務改善の分解法は? さらに、採用プロセスをステップごとに分解してボトルネックを把握する手法は、自分の業務に応用可能であると感じました。業務フローの各ステップの所要時間を可視化することで、改善が必要なポイントを明確にできると考えています。 仮説検証の効果は? 最後に、複数の仮説を立ててからデータで検証するアプローチが、問題解決の際に重要であると再認識しました。原因を一つに決めつけず、多角的に検討する姿勢は日々の業務においても活かしていきたいと思います。 エンジニア視点で何を学ぶ? 私はWebサービスの安定運用を担当するエンジニアとして働いています。今回学んだことは、システム障害の原因分析と業務プロセス改善の二つの場面で活用できると考えています。 障害原因はどこにある? まず、システム障害が発生した際には、全体のエラー率だけを確認するのではなく、機能別、時間帯別、利用者別など、複数の切り口でデータを分解して問題の発生箇所を特定することが重要です。また、利用者からの問い合わせ内容と数字を組み合わせることで、障害の背景にある理由を明確にすることができると実感しました。具体的には、障害時のチェックリストに分解の切り口を追加し、チーム全体で共有することで対応の質を向上させたいと考えています。 対応時間短縮は可能? 次に、障害対応にかかる時間短縮という課題に対しては、原因検知から初動対応、原因特定、復旧作業、再発防止策の検討といったステップに分解し、各プロセスの所要時間を記録してボトルネックを特定する手法が有効だと感じました。例えば、原因特定に時間がかかる場合は、調査情報の整理や手順書の見直しが必要であると考え、障害対応の記録フォーマットに各ステップの所要時間を記入する欄を追加し、データを蓄積して分析することで改善に役立てたいと思います。

クリティカルシンキング入門

思考の偏りに気づき、次の一歩へ

思考のクセ、どう認知する? クリティカルシンキングを身に着ける上で、今の自分に特に足りていないのは「思考のクセや偏りがあることの認知」だと感じました。課題解決に対する打ち手を考える際、「どうせこれで合っている」「自分の考えは間違っていない」と決めつけてしまうことが多いため、自分の考えには癖があるのです。これを客観的に見つめ直し、時には他者からのフィードバックを通して改善していきたいと思います。 求職者から学んだことは? 具体的に、自身の思考の偏りを実感した場面として、求職者がある企業に入社を決めた理由について「入社後のイメージが湧いたから」と話していたことがあります。私はより給与や休日の多い別の企業を選ぶのが当然だと思い込んでいたため、他の価値観も大切にされることを改めて認識しました。この経験から、求職者からの応募を集める広告作成の際、給与や休日だけではなく別の視点も重要だと気づきました。この学びを活かし、思考の偏りを避けるために、「自分だけの考えで決めつけていないか」「他に方法はないか」を自問自答しながら意思決定を進めたいと思います。 思考の認知がもたらす効果とは? 「思考のクセや偏りの認知」は課題解決の場面や社内外のコミュニケーションで役立つと考えています。各場面での具体的な効果は以下の通りです。 【課題解決のための打ち手立案】 ・自分でも気づかなかった課題の要素に気付ける。 ・1つの案だけでなく、予備案を用意できることで、課題解決の可能性が高まる。 【社内の別部署とのコミュニケーション】 ・相手の立場を考え、必要な情報収集や前提の共有ができ、納得感の高いコミュニケーションが図れる。 【クライアントとの打ち合わせ】 ・相手の発言の背景を理解しながら話を進めることで、必要な情報提供ができ、合意に至る可能性が高くなる。 思考の偏りを減らす取り組み 以下の具体的な取り組みを実施したいと考えています。 ・課題解決時にはロジックツリーを用いて要素を分解し、「本当にMECE(漏れなく重複なく)か?」と自問自答する。 ・自分の考えを上司や同僚に相談する。 ・原因を探る際には「なぜ」を少なくとも3回繰り返す。 ・結論だけでなく、その結論に至ったプロセスに着目し、相手がいる場合はその内容を共有する。 ・コミュニケーションの際は必ず会話の前提を意識し、「相手に正しく伝わる言葉選び」を心がける。 これらを実践することで、思考の偏りを減らし、より効果的な意思決定ができるようになると確信しています。

デザイン思考入門

デザイン思考で本質を見つめる

デザイン思考の目的は? デザイン思考とは、人間中心設計のアプローチを体系化し、どのようなステップを踏んで実践していくかを示すプロセスです。まず、ユーザーの行動や感情を観察し、実際に体験するなどして、彼らが抱える課題やニーズに共感し、本質的な問題を明らかにすることが重要です。その上で、数ある課題の中から、イノベーションに結びつく本質的な問題を見出すことがポイントとなります。 なぜ解決策が重要? また、解決策のためには、アイディアを幅広く発散した後、最適なものを選別、具体化し、ユーザーからのフィードバックを受けながら改善を重ねるプロセスが求められます。こうした試行錯誤や開発者とユーザーとのインタラクションにより、単なる技術やプロダクトアウトの発想ではなく、顧客体験から新しいイノベーションを創出することが可能となります。 調査の本質は何? 私が現在関わっている調査研究業務の支援では、直近で手がける調査企画において、本質的な課題が何かを再確認することが大切だと感じています。関係者へのヒアリングや検証方法の検討を通じ、解決策がどのように次の施策へと反映されるのかを、常に意識しながら作業を進めています。 議論はどこで迷う? 講義を受けた後の振り返りでは、現場で本質的な課題について合意を形成することが難しく、「とりあえず手がけられる解決策」へと流れてしまうことが多いと実感しました。誰に向けた施策を,どのタイムラインで求めるのかによってゴールが大きく変わるため、解決すべき対象を明確にし、本質を見失わないように議論を深めていく難しさを感じています。 行動促進の鍵は? 直近では、勤務している大学の研究室で実施しているプロジェクトに関連し、ある行為を習慣化してもらうための要因や、心情的なプラス効果がどう特定の行動促進につながるかを、デザイン思考の視点で分析することを模索しています。調査企画を進めるにあたり、仮説、調査設計、調査票設計の各段階で、本質的な課題がしっかりと捉えられているか再度検討したいと思います。 知識整理の実践は? さらに、デザイン思考について他書籍や学んだ内容を資料や文章としてアウトプットしながら、知識を整理・定着させたいと考えています。将来的には、医療現場でのインタビューや現場調査の際に、広く不満やニーズを収集し、そこから本質的な課題や心理的なインパクト、行動への制約を理解するためのプロセスにデザイン思考の要素を取り入れることが目標です。

データ・アナリティクス入門

データ分析が変えるビジネスの未来

分析を成功させるためには? ライブ授業を通して、次の3点を改めて整理できました。 まず、分析は比較によって成り立つということです。目的とアウトプットを明確にしてから分析に取り組むことで、闇雲な作業を避けることができます。 問題解決のステップをどう活用する? 次に、問題解決のステップ(What-Where-Why-How)の重要性についてです。当日の演習を通じて、これを実際に活用するイメージがつかめました。各ステップでは、目的を明確にし、ロジックツリーの活用や仮説設定、データ収集方法、データの見せ方などのポイントを整理しました。 データ分析から得た新たな発見とは? 最後に、分析のステップとして、検証したいことを具体的にし、仮説を立て、何と比較するかを意識しながらデータを集め、加工してビジュアル化することで、新たな発見が得られることを再確認しました。 また、データ分析の活用については以下の3点が挙げられます。 1. 企画立案時のマーケティングプロセスにおけるデータ活用 現状では、企画立案が現場の勘や経験に偏りがちですが、データを用いることで、より良い意思決定や施策運営につなげたいと考えています。さらに、他の施策との比較や過去のデータ分析を通じて課題点を洗い出し、マーケティングプロセスを改善していきます。 2. 施策振り返り時の検証 施策を振り返る際には、実績に対する問題や課題を明確にし、次の意思決定のために仮説を立てて検証することが重要です。 3. 課題解決に向けた活用 具体的な課題が提示されたときは、問題解決のステップと仮説検証の考え方を用いて取り組んでいきます。 学習方法の見直しがもたらした効果 これらの活用方法を通じて、アウトプットを進めていきたいと考えています。 さらに、本講座の復習をしっかり行い、学んだことを言語化しアウトプットできるようにし、問題解決ステップや仮説思考、フレームワークを実務に取り入れて練習します。自然に使いこなせるようになることを目指します。また、周辺知識の学習も継続的に進めていきます。データ活用にはクリティカルシンキングや伝える力、マーケティングに関する知識が必要で、今回自分に合った学習方法が見えたのも大きな収穫です。 今年度の目標達成に向けた取り組み 今年度は、施策の乱立を防ぎ、効率的な施策運営のために可視化データを作成し、リソースを他の業務に割けるようにしていきたいと思います。そして、掲げた目標に向けて努力を続けます。
AIコーチング導線バナー

「改善 × 解決」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right