データ・アナリティクス入門

目的明確で築く確かな結論

分析目的は何? 分析の目的を明確にすることは非常に大切です。何のために分析するのか、その目的をはっきりさせた上で、比較対象を可能な限り条件を揃えて行うことで、有益な分析結果が得られます。結果として、比較のためのデータ収集が重要なプロセスとなり、その積み重ねが有意義な結論に結びつきます。 品質管理はどうする? また、品質管理の業務においては、障害の原因分析や発生した障害に対する対策の有効性を検証する際にも、この手法が有効です。分析の目的が既に明確であれば、次に課題となるのは、比較対象となるデータの選定と収集です。その際、これまでの経験を踏まえ、しっかりと仮説を立てながら進めることが、正確で有意義な結論を導くポイントとなります。 仮説作成はどう進む? さらに、仮説を立てる場合は、個人の経験や知識だけに頼るのではなく、周囲の知恵や知識を共有して取り入れることが重要です。関係者との情報のやり取りが、より有効なデータの選定と収集につながり、最終的には信頼性の高い結論を導き出すための大きな助けとなると考えます。

データ・アナリティクス入門

比較の視点が開く学びの扉

データ比較の意味は? データ分析は本質的に比較であり、たとえばパソコン購入時に「購入目的」や「必要性」を問い直す姿勢には、根本から見直す意義を感じました。比較の材料が多岐にわたるため、広い視点で重要な要素を捉えることが、適切な比較―すなわち分析―につながると実感しています。 地域診断の見方は? また、今後「地域診断」を学生に教える際には、国、都道府県、市町村の各レベルでのデータ比較や近隣地域との比較が必要であることを強調したいと考えています。さらに、データの推移を見る際には、時代背景や社会情勢の変化、住民の価値観、教育水準、生活水準、文化、財政状況など多様な観点からの比較が不可欠です。 指導計画はどうなる? 来週から始まる学生の実習地での地域診断指導に向け、資料の見直し、指導スタッフとの方針の共有、記録用紙の修正を行う予定です。複数の実習施設に分かれて進められる実習では、各グループが進捗状況を発表することで、自分の実習地と他との比較が自然に行われ、異なる分析方法を学ぶ良い機会となると期待しています。

データ・アナリティクス入門

分かると変わる!シンプル分析のすすめ

何がわかったら購入? パソコンを購入する際に、何を調べ、どのような情報が得られたら購入に踏み切るかという問いかけから、データ分析における「分析」の意味が明確になったと感じました。「分析」というと堅苦しくなりがちですが、「何がわかったら購入するか」というシンプルな視点を常に意識したいと思います。 意思決定のヒントは? 現状、組織全体でデータを活用して意思決定を行う文化が十分に根付いていないため、「何がわかったら◯◯するか」という観点を直接業務に取り入れるのは難しい印象を受けました。しかし、この視点を意識しながら業務を進めると、必要なデータや情報に気づく機会が増えると考えています。 新規事業の目的は? また、現在企画中の新規事業においても、「何が分かったら◯◯するか」という目的設定を明確にすることが重要だと感じています。特に、地域におけるアンコンシャス・バイアスの解消を目指す事業においては、目的が不明瞭な部分があるため、その課題解決の有用性をデータに基づいて説明できるようにしていきたいと思います。

データ・アナリティクス入門

仮説で開く成長の扉

仮説の軸どうする? 仮説を考える際は、一定の軸を持って行うと思考が整理され効率的です。例えば、4P(価格・場所・商品・プロモーション)や3C(顧客・競合・自社)などのフレームワークを活用することで、仮説が一点に偏らず、全体を俯瞰して検討できます。 効果検証のポイントは? また、デジタルマーケティングの効果検証においては、訴求メッセージが狙った対象に適切に伝わっているか、費用対効果が十分か、媒体ごとの違いがあるかなどを意識して仮説を立てることが重要です。ターゲット設定が正確かどうか、その情報が購買に結びついているかという点も、明確な仮説設計を通じて再確認する必要があります。 購買行動の見極めは? さらに、購買データに基づき、どのイベントが発生したときに購買に結びつくのかを意識しながらデータを整理することで、仮説シナリオを構築します。その上で、ターゲットを明確に定め、手元にある各種レポートや分析ツールをもとに、メッセージが本来届くべき相手にしっかり伝わっているかを検証する方法が求められます。

データ・アナリティクス入門

議論が生む新たな発見

多角的視点で何が見えた? 学んだ内容を振り返り、複数の視点から議論することで、これまで見落としていた点や新たな切り口、さまざまなアプローチ方法に多くの気づきを得ることができました。今後は、このような環境を社内にも広げ、各自が自走できる体制を整えていきたいと考えています。 上司の依頼はどう活かす? 日常業務では上司からデータ分析の依頼を受けることが多く、上司の興味関心と実際の事業課題を明確に切り分け、目的意識を持った意味ある分析が事業に貢献できるような環境作りが求められると実感しました。また、データ収集がそれ自体の目的にならないよう、適切なデータの収集と活用に努める必要があります。 実行策にどうつなげる? このため、まずはビジネスプロセスマップやビジネスモデルキャンパスを作成して全体像を把握します。次に、関係者間で課題の所在を共通認識として持ち、データ分析を通じて課題の発見や優先順位、重要度を明確にします。最後に、分析結果に基づき実行策を評価することで、より効果的な改善策を進められると考えています。

データ・アナリティクス入門

多角的視点で広がる分析の世界

多角的な比較の意味は? 分析という作業は、さまざまな比較を通じて進めるものだと実感しました。異なる業界の方々と交流する中で、これまでにない視点やアプローチを知ることができ、データ分析における多様な考え方を学ぶ良い機会となりました。特に、GWでの話し方や取りまとめ方は大変参考になり、自分自身もその手法を取り入れたいと感じました。 成果分析の幅は? 具体的には、昨年の実績や計画との比較、さらには類似製品や過去のデータ比率といった複数の切り口での分析を行っていく予定です。これらの視点を用いて、毎週の実績を追いながら着実に分析の幅を広げていきたいと考えています。 導く結論のヒントは? ただし、現時点では分析からどのような結論を導き出せるかという点で、まだ十分な引き出しがないと感じています。この部分については、今後さらに知見を深め、充実させていきたいと思います。 他の手法はどう? また、他の受講生の皆さんが業務においてどのような比較手法を用い、データ分析を実施しているのかも非常に興味深く感じました。

データ・アナリティクス入門

数字が語る学びの秘密

データ比較の基本は? 他のデータと比較することが、意味を見出すうえで重要だと理解していましたが、件数が多いデータ同士の比較では、代表値を用いる必要があることや、データの分布状況を考慮する必要がある点まで深く意識したことはありませんでした。今回の学習で、データをビジュアル化して各々の特性を目で確認することで、仮説が立てやすくなる一連の流れが理解でき、非常に勉強になりました。 数値の習得方法は? ただ、加重平均や幾何平均、中央値、標準偏差といった細かな数値の算出については、繰り返し実践しながら学んでいかないと身につかないと感じました。そのため、何度も反復して練習する必要性を痛感しました。 資料作成にどう活かす? 今後、資料作成の際に付録データを掲載する場合は、今回学んだデータのビジュアル化を活かし、読み手に伝わるようなデータ表現を工夫してみたいと思います。また、データ分析の際には、どのような状況でどの代表値が適切かを踏まえ、代表値と散らばりを考慮して数字を集約していくことを意識したいと考えています。

クリティカルシンキング入門

知識から実践へ―反省が未来を創る

知識と実践のギャップは? グロービスの学習では、毎週のミニレポート作成を通して「知っている」と「使える」の違いを実感しました。ライブ授業の中で問われた際、インプットしたはずの内容がすぐには出てこなかったこともあり、知識を業務で実際に使うためには、継続的な反復練習や学んだことを意識的に活用する機会を作ることが重要だと感じています。 社内評価はどう変わる? また、社内のモチベーションサーベイの分析業務についても、これまで数値の比較に終始していた自分のアプローチを見直す機会となりました。今回、ライブ授業で学んだ分析のステップを業務に取り入れることを決意しました。 分析の手順は何? 具体的には、まず分析の目的を明確にするために問いを立て、その問いを共有することが大切であると認識しています。次に、情報を工夫し、必要に応じて新たな列を追加したり、割合を算出したり、データの並び替えを行います。最後に、グラフへと視覚化することで、数値だけでは見えにくかった情報を一目で把握できるようにする工夫を実践していきます。

クリティカルシンキング入門

切り口から紐解く数字の魅力

数字の解析はどうする? 今週は、数字を分解する方法について学びました。数字はそのまま扱うのではなく、グラフや比率などに加工することで、より分かりやすくなるという点に気づきました。また、データを仕分ける際は、さまざまな切り口を考えて書き出すことが重要であると学びました。得られた数字の解釈に思い込みすぎず、結果が出なくても構わないという柔軟な姿勢が大切であり、迷った際には別の切り口からアプローチすることが有効だと理解しました。さらに、実践に際しては、属性、変数、プロセスという3つの切り口からMECEの概念を活かして分解する方法も学びました。 売上分析はどう進む? この学びを活かして、月次の売上報告書の分析に取り組んでみたいと考えています。まず、売上を顧客数×単価の視点から自社の過去の傾向を整理し、課題を特定します。次に、その原因を明らかにするため、顧客をいくつかの切り口に分け、それぞれの単価傾向を比較してみます。最後に、分析結果から導かれた解釈が適切かどうか、会議で意見を聞くことで確認していく予定です。

データ・アナリティクス入門

データが紡ぐ学びの物語

データはどのように? データは、数字、視覚、そして数式という三つの観点から捉えることができます。まずは平均値を確認し、その値を基に仮説を立てます。その上で、実際のデータのばらつきを評価し、平均値だけでは把握しきれない場合には標準偏差を活用します。標準偏差が小さいとデータのばらつきは少なく、大きい場合はばらつきが大きいことを示しています。 視覚情報は活かせる? また、データの種類に応じて適切なグラフを選び、視覚的に理解しやすいようにすることが重要です。与えられたデータやそこから計算された数値だけでは十分な情報を得られないこともあるため、データを客観的に評価し、集約しすぎていないかどうかやばらつきの状況を分解して考慮する必要があると感じました。 偏りをどう防ぐ? さらに、単に平均値を求めるだけでなく、標準偏差や中央値などの他の指標も用いることで、、より偏りの少ない分析が可能となります。状況に応じて平均、最大値、最小値以外の指標も活用し、迅速に必要な情報を把握できるようにすることが求められます。

データ・アナリティクス入門

問いから始まるデータ探求

仮説はどう作成? データ分析において、まず仮説(問い)をどのように作成するかが重要であると再認識しました。解説で提示された「地元のネットワークを構築できなかったから」という視点は、私にとって新たな発見でした。また、仮説自体の数が少なかったことから、問いを思いつくためのトレーニングが必要だと感じました。 中央値の適用は? 代表値、特に中央値の用い方についても多くを学びました。アンケート分析などにおいて、平均値が低いという理由だけで意図的に中央値を用いるのは適切ではないという指摘は、慎重な判断が求められると実感させられました。 平均値は信用できる? 報道などで目にする数字の平均値だけに頼るのではなく、しっかりと問いを立て、調査することの大切さを改めて考えさせられました。 最適なグラフは? また、伝えたい内容や主張に合わせて最適なグラフを選定する方法を検討し、Excelなどで実際に作成してみることが有効だと感じました。問いを立て、その根拠となるデータを調べ考察する訓練の重要性も実感しました。

データ・アナリティクス入門

ロジックツリーで問題解決の新視点を発見

ロジックツリーはなぜ必要? ロジックツリーの作り方について、層別分解と変数分解の二つの手法があることを学びました。それぞれの方法は、分析したいデータに応じて使い分けることが重要だと考えます。一般的には、MECEの概念に基づいて、漏れなく重複なくと考えがちですが、実際には問題特定や新たな発見を目的として、意味のある分類ができるように、様々な視点を持つことが重要だと感じました。 層別分解の効果は? あるプロジェクトでは、問題を特定する必要があるため、ロジックツリーを用いた層別分解によって、MECEを念頭に置きながら、どのような層別にするかを考え、問題特定や意味ある分類を目指したいと思います。 ギャップ埋めはどうする? まず、理想的な状態と現状の間にあるギャップを洗い出し、ロジックツリーの層別分解に当てはめることで、多角的な視点から分析を行いたいと考えています。そして、さまざまな層別で詳細に分解し、問題箇所を特定し、そのギャップをどのように埋めていくかについての提案を資料としてまとめたいと思います。
AIコーチング導線バナー

「分析 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right