データ・アナリティクス入門

Excel実践で磨くデータ思考

データ分析の意味は? データ分析では、比較と独自の観点が価値を生むと感じました。基本的な内容でありながら、Excelでの実践的な手法を学ぶ中で、自分の思考プロセスが整理され、視野が広がったと実感しています。 フレームワーク活用の秘訣は? 今回学んだフレームワーク、たとえばファネル分析や3C、4Pなどを中心に活用したいと考えています。定期的に振り返りを行うことで、より効果的な比較ができるよう意識して取り組むつもりです。 転職後の展望は? さらに、業務においても今回の学びを基礎として活用します。今後、データマーケティング職への転職が決まっているため、壁にぶつかったときは学んだフレームワークや思考プロセスに立ち返り、より広い視野で問題に取り組む方針です。

データ・アナリティクス入門

新たな視点で未来を切り拓く

分析の目的は何? 分析の目的や検証したい仮説を明確にすることで、アウトプットの内容が大きく変わると感じました。いきなり分析に着手するのではなく、どの切り口を採用するかを検討することで、分析の精度が向上すると実感しています。 新たな視点はどう捉える? これまで、売上データの分析など同じ流れで進めてきた結果、似たようなアウトプットになっているという課題がありました。そのため、今後は新たな視点を導入し、自分自身やチームのメンバーが新しい気づきを得られるよう意識していきます。 バイアスをどう排除する? また、従来のバイアスをできる限り排除する分析手法と、その結果をチーム全体で共有する取り組みを進め、具体的な施策につなげられるよう努めていきたいと考えています。

データ・アナリティクス入門

角度変えて見つける学びの真髄

多角的に見る大切さは? 物事は一方向からだけではなく、さまざまな角度から捉えることで本質に迫ることができます。一つのデータだけでなく、多くの情報を比較検討しながら分析を進める必要があり、見極める力を養うことが大切です。 データ活用のポイントは? 定量データを扱うことが多い中で、そのデータをどう活かすかを常に検討することが求められます。正確なデータの取り扱いをはじめ、集めた情報を蓄積し、前後の変化を比較することが、分析力向上の基礎となります。 数字のパワーを知る? また、分析により提案が有力な判断材料となるよう、数字の扱い方や活用方法にも工夫が必要です。数字が持つパワーは、その扱い方次第で大きく変わるため、具体的な活用策を考えることが重要です。

データ・アナリティクス入門

データの裏付けで説得力アップ

データ分析の本質は? コンサル業におけるデータ処理では、これまで感覚で平均値や中央値、さらには円グラフや棒グラフの選択を行ってきました。しかし、平均値だけではデータのばらつきや分布の特徴が十分に表現されないため、標準偏差のような指標を用いることで、データが平均値付近に集中しているのか、ばらつきが大きいのかを把握することができます。また、ヒストグラムや円グラフといったビジュアル化ツールは、データの全体像を直感的に理解するのに役立ちます。 成果向上はどう実現? 今後は、根拠に基づいた値の選択やグラフの作成を行うことで、自己のパフォーマンス向上はもちろん、ジュニアメンバーへの指導においても説得力のあるアドバイスが可能になると感じています。

データ・アナリティクス入門

エクセルで紐解く学びのヒント

どんな分析で進める? これまでの業務で、約100名を対象とした分析を行う機会がありました。エクセルを用いたビジュアル化が簡単にできるため、基本的には中央値と標準偏差を中心にデータの分布を確認していました。しかし、平均値など他の代表値も併せて計算し、データ全体を多角的に眺めた上で仮説を立て、分析を進めるフローが重要だと感じています。 どう観察すれば精度? また、サンプル数が少ない場合であっても決めつけず、平均値などを算出してデータをしっかりと観察することで、より精度の高い分析が可能になると考えています。このようなフローを週に1回以上実施し、標準偏差などの統計値は適宜AIに質問したり、エクセルの関数を活用するなどして算出しています。

データ・アナリティクス入門

納得を呼ぶ仮説とデータの魔法

仮説の種類は何? 仮説には「結論の仮説」と「問題解決の仮説」の2種類があると学びました。また、複数の仮説を立てることや、各仮説が網羅的にカバーされているかを確認する点がポイントとして挙げられています。 どんなデータが大切? さらに、分析や資料作成の際には、比較するためのデータ収集を行い、反論を排除する情報にまで踏み込むことが重要です。自分に都合の良いデータだけを集めるのではなく、あらゆる角度から納得感のある結論に導くために、仮説を立証するためのデータ収集と加工を繰り返すプロセスが必要だと感じました。また、報告や資料作成の際には、意識的に反論者の視点を取り入れることで、より説得力のある分析ができるようになると確信しています。

データ・アナリティクス入門

仮説が切り拓く新たな視点

仮説設定はなぜ必要? データを加工する前に、まず仮説を立てることが非常に重要です。分析は目的があって成り立つため、単に数値や結果そのものにとらわれず、目的に照らした適切な加工方法を検討する必要があります。数値をそのまま受け取るのではなく、自分の観点を加え、他にどんな見方ができるのかという視点の多様性を意識します。また、確からしい仮説の立案のみならず、素早く検証するスピード感も大切です。 分析視点はどう選ぶ? 月次や週次の業務分析においては、どの角度からデータを切り分けるのが最も適切かを常に考慮します。分析後は、まとめた内容が本当に正しい観点に基づいているか、過去の踏襲に陥っていないかを再検討することが求められます。

データ・アナリティクス入門

分析で気づく新たな視点: データ比較の重要性

データ分析での思考法とは? 「分析は比較なり」という言葉が印象的でした。これまで、データ分析といえばすぐに数値を操作してパーセンテージを計算し、グラフを作成することだと思い込んでいました。ですが、何より思考の部分が重要であることを教えてもらい、とても参考になりました。 オープンデータの課題はどう洗い出す? 現在、私は行政のオープンデータから課題を洗い出す仕事に取り組んでいます。規模が大きいデータを前にして、どこから手を付ければよいのか途方に暮れることもありました。しかし「まずは比較」のアプローチを念頭に置き、データを俯瞰して眺めることを実践してみようと思います。

データ・アナリティクス入門

目的と仮説で拓くEC成功ストーリー

目的は明確? 私は自社ECサイトの制作に携わっており、グーグルアナリティクスやその他のアクセス解析ツールを用いて分析を行う機会があります。その際、まず目的と仮説を明確にし、データに向き合う前に自分自身やチームメンバーと共有することが重要であると実感しています。 分析報告は納得? また、分析結果を報告する際にも、目的や仮説を伝えるように心がけています。これまでデータそのものとそこから読み取れる情報、そしてそれに基づく提案を中心に報告していましたが、仮説も合わせて示すことで、第三者にとってより理解しやすく納得のいく内容になることに気づきました。

データ・アナリティクス入門

データで語る!問いが導く納得の結論

「分析 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right