データ・アナリティクス入門

データが映す問題解決の一歩

データ分析前の課題は? データ分析を始める前に、まず何が問題なのかを明確にし、その問題がどこで発生しているのかを確認することが重要です。分析の基本は分解にあり、目的に応じて様々な視点で切り分ける際、階層の違いに注意する必要があります。たとえば、where、why、howの順序を意識することで、基本に立ち返ることができます。 検証方法はどうする? 実際の業務においては、前月の業績(予実差)を基に問題を設定し、どこから問題が生じているのかを調べます。その際、自分の感覚だけではなく、データ上で本当にそう言えるかをしっかりと検証することが求められます。結果を先入観として捉えず、データに基づいた事実を導き出す姿勢が大切です。 振り返りの進め方は? 毎月の業績振り返りでは、改めて何が問題なのかを定め、具体的な発生箇所を探るプロセスを実践します。このプロセスを通じて、自身の直感が正しいかどうかをデータを用いて検証し、結果ありきでデータを選び出さないことを意識することが求められます。

データ・アナリティクス入門

検証が導く次の一手

結果の背景は何? PDCAサイクルにおける「C(Check)」の重要性を改めて実感しました。業務では、A/Bテストの結果が出るとすぐに「採用」と「不採用」の判断に偏りがちですが、なぜその結果になったのかという背景や要因の検証が不足していると、本質的な成果や再現性のある改善につながりません。 結果だけで大丈夫? 自身の業務においても、施策実施後に結果だけを見て結論を出す傾向がありました。しかし、今後は仮説とのずれや背景要因を丁寧に分析し、再現性のある改善策を立てる必要性を感じています。 検証で進化できる? そこで、施策の実施後は必ず検証の時間を確保し、PDCAサイクルの「C(チェック)」を強化することを行動計画に盛り込みます。具体的には、仮説と結果の差異を可視化し、原因分析のためのデータを事前に収集・整理する仕組みを整え、定期的な振り返りの場で結果の背景を多角的に検証します。これにより、直感や思いつきに頼らず、根拠ある意思決定を進めていきたいと考えています。

データ・アナリティクス入門

目的再確認で磨く鋭い分析

計画の反省点は? これまで計画的な勉強をせずに分析業務を進めてきましたが、これまでの経験を体系的に整理できたと感じています。 比較検討する意味は? 特に印象に残ったのは、目的と比較対象を再確認することで、分析の内容がより鋭くなった点です。どの手法や見せ方を選ぶかは、結論を導き出しほかの人に共有する上で重要であり、データに応じた適切な手法の選択が求められます。 共有の大切さは? 今後は、何を目指し何と比較するのかを具体的かつ明確にし、チーム内でしっかりと共有することを徹底していきたいと考えています。これにより、分析結果がより精度の高い仮説検証に繋がり、プロセス全体の質が向上すると思います。 挑戦の意義は? 具体的には、フォローアップや分析の都度、目的を直接再確認すること、目指すべきものと比較対象をはっきりさせた上で最初にチームと確認し合うプロセスを重視しています。また、習得した分析手法を活かし、普段あまり使用しなかった方法にも意識的に挑戦するよう心掛けています。

データ・アナリティクス入門

仮説が照らす新たな一歩

結論と解決をどう見極める? 仮説には、論点に対する一時的な答えとしての「結論の仮説」と、具体的な問題解決を推進する「問題解決の仮説」があるという考え方があります。複数の切り口から仮説を立て、そこから焦点を絞っていくことで、決め打ちせず柔軟に検証を進めることができます。 仮説と検証はどう活かす? このアプローチにより、検証マインドや説得力、問題意識が自然と向上し、分析のスピードおよび行動の精度が高まると感じています。たとえば、営業活動の最適化を図る際には、既存のデータから読み取れる情報に加え、どのようなデータがあれば反論を排除できるかを考慮した仮説を設定し、必要なデータを収集することが重要です。 BI導入で何を学ぶ? また、BIツールを活用した経営ダッシュボードを作成する際は、単に事実を表示するだけでなく、社員が仮説を立て行動につなげられるよう設計する工夫が求められます。納得してもらえる仮説の立て方を学ぶことが、効果的な分析や営業活動の最適化に直結すると実感しています。

データ・アナリティクス入門

平均に隠されたデータの真実

代表値の意味は? データを理解する際、代表値の考え方が基本であると学びました。代表値には単純平均、加重平均、幾何平均、中央値などがあり、たとえ二つの集団で平均値が同じでも、ばらつきの度合いによって集団の実態は大きく異なることがわかります。ばらつきは標準偏差という指標で表され、また、グラフを用いてデータを視覚化することで、説得力が増すことも学びました。 報告書のポイントは? 報告書にデータやグラフを用いる際には、より意味のある情報を見出すことが重要です。平均値だけでは集団の性質を十分に理解できないため、ばらつきなど他の要素も加味し、「本当にそう言えるのか?」と多角的に考える必要があると感じました。 分析目的は何? そのため、まず何のための分析なのか、その目的を明確にすることが大切です。次に、必要なデータを特定し、信頼できる情報源から取得すること。そして、代表値や標準偏差をどう活用すれば集団の性質が理解できるのかを考慮しながら、データを適切に扱いたいと思います。

データ・アナリティクス入門

代表値だけじゃない分析の魅力

代表値は何が最適? 代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、データの内容に応じて使い分けることが求められます。たった一種類の代表値だけを見てしまうと、判断を誤る可能性があるため、標準偏差も含め、データがどれだけ散らばっているか、もしくはまとまっているかといった視点も重要です。 データはどう分析? これまで契約データの分析では、各代表値をそれぞれの視点から確認し、常に多角的なアプローチをとってきました。これにより、一方に偏ることなく、データ全体の特徴をしっかりと把握することができました。CAGRを用いていた部分も、実は幾何平均の単年度バージョンとして捉えることができると考えています。 今後の判断はどう? 今後も、ただ一つの代表値に依存するのではなく、複数の指標を参照しながら、データ群にどのような特徴があるのかを判断したいと思います。そして、分析の目的に立ち返り、適切な分析手法やグラフの選択を通して、より正確な業務遂行を目指します。

データ・アナリティクス入門

比較で見つける日常データの宝石

データの隠れた意味は? 「分析は比較なり」という講師の言葉に、これまでの自分のデータに対する見方を改める衝撃を受けました。単に手元にあるデータだけでは、平均値や統計情報といった基準を算出することができず、その中に秘められた情報を読み解く重要性を再認識する機会となりました。 数字以外も活かせる? また、データ分析と言えば数字を思い描くことが多いですが、文字列などで表現される資料もまたデータであると教わりました。間接部門で働く中で、これまでデータに対して多少なりとも距離を感じていた私にとって、まずは日常の中で身近に存在するデータを取りこぼさず活用することの必要性を実感しました。 管理と復習は十分? 具体的には、毎日、毎週、毎月の使用単位で見落としがないかデータをチェックすること、一元的な保管場所を確保してデータの集計状況を整えることが挙げられます。迷ったときは今回の学びを振り返り、復習を繰り返すことで「データとは何か」を体で覚えていくことが大切だと感じました。

戦略思考入門

戦略で描く理想の未来

学びの振り返りは? 今週は、戦略思考の講座全体を通して学んできたことを改めて振り返る機会となりました。毎週、知識のインプットとアウトプットを繰り返し、グループワークでは多くの良い刺激を受けてきた一方、全体を見直すと知識の一部が忘れかけていることに気づき、少なからず焦りを感じました。今回学んだ内容を確実に定着させるためには、意識的に活用し、実践を重ねながらアウトプットを繰り返すことが必要だと実感しました。 知識の活かし方は? また、戦略思考で得た知識は特に事業計画の策定に役立つと考えています。これまでは、現状と短期間の予測に基づいた計画しか考えていなかった自分に気づかされ、まずは目指すべき理想像を描くことから始める決意を新たにしました。変化が激しく不確実な状況の中で持続可能な競争優位を確立し、勝ち残るためには、今回学んだ知識とフレームワークを活用してさまざまな角度からデータを客観的に分析し、やるべきこととやらざるべきことを明確にして実践していくことが重要だと感じています。

データ・アナリティクス入門

データ分析の新たな視点を学んで気づいたこと

新たに学んだ加重平均とは? 加重平均を新たに学びました。外れ値がある場合に平均値で表せないことは感覚的には理解していましたが、加重平均を用いて計算したことはありませんでした。また、成長率についても単純に年数分の成長を年数で割るものではないと知っていましたが、直感的にすぐに計算できる方法を知りませんでした。このため、幾何平均も新たに学びました。 学んだ方法の活用を考える 現在の業務では、前年比を用いており、今回学んだ方法を使用する場面はほとんどないと考えています(会社的に求められていない)。しかし、個人的な興味や研究として、各種費用の値上げ率を幾何平均で算出し、物価上昇率との相関を見てみたいと思います。 個人的な興味とデータ分析 会社としてのアウトプットは求められていませんが、個人的な興味として、学んだ手法を各種データに当てはめて試してみるつもりです。これにより、これらのデータ分析が本当に不要なのか、それとも必要なのに見落としているのかを検証してみたいと思います。

データ・アナリティクス入門

試行錯誤が未来を拓く

プロセスはどう進む? 問題解決のプロセスでは、目の前の事象に飛びつかず、複数の選択肢を用意してテストを行いながら、仮説検証を繰り返すことが大切だと感じました。その過程で根拠を持って絞り込みを進めることが必要です。 分析は何を示す? また、データを収集して分析するアプローチも重要です。仮説を試しながら同時にデータの収集を進め、より良い解決方法を探ることが求められます。今の時代は動きが早いため、あれこれ考えすぎるよりも、実際に動きながら考え、必要に応じて迅速に修正していく体制が不可欠と感じました。 運営支援はどう変わる? さらに、コミュニティ運営サポートにおいては、データ分析の手法が多岐に渡ります。特に受講生の満足度についての調査を通して、彼らがどのような興味や関心を持っているのかを理解し、退会率を抑えるための施策を検討する必要があります。そのためには、ABテストなどを用いて実際の反応を確かめながら、求められているサービスを提供していくことが欠かせないと感じました。

データ・アナリティクス入門

具体を引き出す対話の魔法

目的をどう明確化? 分析の目的を明確にすることの重要性を実感しました。データを活用する相手がどのような目的で情報を求めているのか、コミュニケーションを通して具体的に確認する必要があります。しかし、実際に会話をすると、目的が漠然としていたり、具体的な内容が伝えられないケースが多く見受けられました。そのため、抽象的な要素を具体的な内容として引き出すヒアリング力が非常に重要だと感じています。この過程で、仮説設定や比較対象の選定がより明確になり、全体の分析基準がしっかりと定まると考えます。 営業データは何を示す? また、営業活動においては、提供するデータがますます重要になっています。特に、自社製品の導入理由を明確に説明することが求められる中、競合他社との比較において自社製品を選ぶ根拠を明確なデータで示すことが必要です。営業と意見を共有しながら、データ活用の目的を具体的に明確化し、客観的な視点を保った説得力のあるデータ提供を行うことで、導入率の向上につなげたいと考えています。

データ・アナリティクス入門

仮説とデータで見える未来

仮説思考はなぜ必要? 仮説思考の大切さを改めて実感しました。日々得られるファクトに対して「なぜ?」や「どうすれば良いか?」と疑問を持つ中で、あらかじめ仮説を設定することで業務上の疑問点や関心事に対し、より具体的なアプローチが可能となり、結果として業務の精度が上がると感じました。 データの活かし方は? また、データ収集においても、ただ数多くの情報を集めるのではなく、データの特性を十分に理解した上で、絞り込んだ活用を行う必要性を感じました。実績の分析に際しては、例えば「この時期だから売上が伸びないのか」や「この季節だから売り上げが良いのか」といった視点で、状況を整理することが有効でした。 記録の意義は? さらに、手元にあるデータやメモを活用し、気になった点や疑問点を記録しておくことは、仮説の検証や業務改善に直結する重要なプロセスであると感じました。日々その記録を見返しながら自問自答を繰り返すことで、自分なりの解を持ち、分析を重ねる姿勢が身に付いたと思います。

「分析 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right