データ・アナリティクス入門

数字から広がる仮説の世界

数字加工はどう進む? 3週目では、仮説を立てるために数字をどのように加工するかを学びました。数字から意味を見出すには、まずデータを加工し、次にグラフなどでビジュアル化するという手順が重要です。具体的には、データの代表値を用いた加工や、ばらつきを感じた際には標準偏差を活用するなど、データの特性に応じた方法を選択します。これにより、グラフ化された情報から傾向をより把握しやすくなります。 手法の応用は? また、データ加工の手法が多様であることを理解した上で、毎月集計している売上や顧客層の分析にどの方法が適用できるのかを検討する意欲が湧きました。顧客層に特にばらつきが見られなくても、着目する観点によっては標準偏差を使った加工が有用である可能性があります。そのため、まずは代表値を用いてデータを整理し、グラフにしてみることが考えられます。 売上分析の疑問は? さらに、毎週抽出している売上データに目を向け、加工を通じて仮説を立てる試みも進めたいと思います。売上が高い日と低い日があるという傾向に注目し、どの代表値を活用するのが最適かを検討しながら、より具体的な仮説を構築したいと考えています。

データ・アナリティクス入門

仮説で切り拓く受講生の挑戦記

分析って何を探す? 分析とは、物事を比較しながら目的意識を明確にし、仮説を立てつつ進めるプロセスです。分析を効果的に進めるためには、「What(何を)」「Where(どこで)」「Why(なぜ)」「How(どのように)」という手順に沿うと良い成果が得られる可能性があります。 フレームをどう活かす? 特に「Why」の段階では、ケースに応じて既存のフレームワークを活用することで、より深い洞察が得られるでしょう。また、分析結果をグラフなどで見える化することにより、その説得力は一層増します。 障害の本質は何? 障害分析においては、過去の事例を参考にしながら、現時点では見えていない問題点を抽出することが重要です。これまでは既存の数字を並べるだけで手探りだった部分も、今後は「何を明らかにするか」という目的意識を持って進めたいと考えています。 データ活用はどう? まずは、障害発生件数の減少を目指すために、どのようなデータが必要かを検討し、過去の事例から現在の課題を洗い出すことから始めます。その上で、得られた情報をもとに自分なりの仮説を立て、分析作業を着実に進めていきたいと思います。

クリティカルシンキング入門

比較と変化で見つける新発見

比較と変化は? 私は、日常の分析活動で「比較」と「変化」の視点が非常に重要であると実感しています。どの分野においても分析は欠かせず、特にメンバーから提出されるレポートを評価し、判断や助言を行う際にこの視点は大きな指針となります。 グラフで何が見える? そのため、視覚的な要素、特にグラフの活用が不可欠です。グラフはデータの比較や変化を直感的に理解させる力があり、情報を分かりやすく伝えます。また、グラフを用いた分析においては、対象を適切に分解することが重要です。この分解はMECEの原則に基づき、内容を重複なく漏れなく整理することが鉄則です。 分解の方法はどう? 分解の方法としては、基本的には均等な分割が王道ですが、状況によっては不均等に分けた方がより筋の通った分析ができる場合もあります。この柔軟な発想で分析することが、実践において非常に役立つと感じています。 分析の極意は何? 以上の理由から、比較と変化の視点を大切にし、視覚的ツールとしてグラフを積極的に用いるとともに、MECEに基づく分解を意識することが、日々の分析やレポート作成において極めて有効であると考えています。

クリティカルシンキング入門

データ分析で気づく新たな切り口の魅力

データ分析の新しい切り口は? データ分析において、単に数字を見るだけでなく、その切り口や追加する要素によって新たに得られる情報が異なることを学びました。データを視覚化することで、適切な切り口を見つける手助けにもなります。そのため、まずは異なる切り口でデータを分けてみることから始めていきたいと思います。 売り上げパターンはどう探る? 例えば、商品の売り上げを分析する場合には、既存顧客や新規顧客のどの層で売り上げが伸びているのか、また、新色と既存色のどちらが売り上げに寄与しているのかを確認する必要があります。 新商品の需要をどう予測する? また、新商品の市場性やニーズについても、どの年代や年齢層に需要があるかを分析することが大切です。このためにアンケートを実施し、そのデータを元に市場性を確認していきます。 昨年の売り上げデータの活用法は? 昨年発売した商品の売り上げについては、月ごとに分析を行っているため、データの分け方をさらに細かく見直し、実践に活かしたいです。新商品だけでなく、既存商品や周辺商品も含めて、相関性を確認することで、より深い洞察が得られると考えています。

データ・アナリティクス入門

分解思考で見える未来への一歩

授業の何が良かった? ライブ授業でこれまで学んだことのおさらいができた点は、とても良かったと感じています。講義の中で、データ分析は比較が基本であること、また分析の前には明確な目的と仮説が重要であると改めて認識しました。 問題解決の視点は? さらに、問題解決には「what」「where」「why」「how」の視点が有効であると学び、特に「what」と「where」の感度を高めるために、分解の切り口を増やす活動に取り組む意欲が湧きました。 動画と集客はどう? また、動画クリエイティブの課題については、演者、媒体、長さなどの各要素に分解して問題点を特定し、数値の改善を目指す方法論が印象に残りました。同様に、集客キャンペーンの改善に関しても、何が悪かったのかを明確にすることで、次回実施への具体的な提案に繋げることの重要性を感じました。 分解は何を示す? とにかく、問題を分解して考える姿勢が大切だと実感しています。データを集めた後は、グラフなどを用いて視覚化することで理解を深め、施策実施後には常に仮説との比較を行って、正しかった点や改善すべき点を明確にしていきたいと思います。

データ・アナリティクス入門

データ分析で見えた改善のヒント

目的と比較の重要性を認識 実務では無意識で実践していましたが、分析においては目的と比較が重要であることを再認識しました。「何を伝えたいのか」によってグラフの作成方法を考える、という視点は今後意識していきたいです。また、分析において要素に分解することは大切ですが、目的が明確でないと細かく分解すること自体が目的化してしまう可能性があるため、注意したいところです。 分析結果を施策にどう活かす? 弊社サービスの利用率や更新率を高める施策を考える上で、ユーザーデータの分析における学びを活用したいと思います。具体的には、「利用率を高める」ことと「更新率を高める」ことという目的に分けて、ユーザーの利用データや解約時アンケートなどの各種データから必要な項目を抽出し、分析します。 チームとの効果的な議論をどう行う? 毎週のチームメンバーとのミーティングでは、学んだことをメンバーにアウトプットし、チーム全体の視座を揃えるように努めます。特に、「利用率を高める」「更新率を高める」ためのデータ分析をメンバーと協力して行い、効果的な施策を導き出せるよう、有意義なディスカッションを重ねていきたいです。

データ・アナリティクス入門

代表値が語る!新たな比較のヒント

グラフだけで十分? これまで、単にグラフを用いて数値を視覚的に比較する方法に頼っていました。しかし、代表値に着目した比較はほとんど行っておらず、今回、加重平均、幾何平均、中央値、標準偏差といった比較に有用な数値があることを学びました。 業務への活用は? この学びを自分の業務にどう活かすかが、今後の課題だと感じています。手元にある数字の代表値を用いることで、どのような比較ができるのかを明確にすることが、新たな発見につながるデータ分析のカギになると考えています。 他地域比較は? 特に、前年や他地域との比較において、データを代表値に置き換えて検証することで、新たな示唆が得られるかもしれません。現状、扱っているデータはシンプルですが、代表値を取り入れることで比較分析がより効率的になる可能性を感じました。 数値分析を実践? まずは、現時点でのデータの代表値を算出することから始め、加重平均、幾何平均、中央値、標準偏差を用いた分析にチャレンジしてみたいと思います。これによって、短時間で効果的な比較が実現できるか、または新たな発見があるのかを検証していきたいです。

データ・アナリティクス入門

仮説×データで切り拓く未来

どうして条件を揃える? 今回の実践では、普段の業務で使っているデータ分析のフレームワークと非常に近い感覚を得られました。時期要因や市場状況、法令改定など、すべての条件を完全に統一することは難しいですが、できるだけ条件を揃えた上でA/Bテストを行う大切さを再確認しました。 仮説はどう検証する? また、仮説を立てる際には、一人の頭脳や限られた環境だけでは限界があると感じました。時間を確保し、場合によっては他者の意見や視点を取り入れながら、しっかりと仮説を検討し、データの切り口を考える必要性を実感しました。 採用分析のコツは? 顧客の採用データ分析については、応募から入社までの全てのプロセス(場合によっては書類選考の評価も含む)を明確に線引きし、どの段階で大きな離脱が起きているのかを特定できるよう、可視化の土台を整える重要性を学びました。 改善の基準は何? さらに、改善施策を検討する際には、どの指標を、どのように改善するための施策なのか、また、いつのスコアを基準にするのかを明確にすることが必要です。振り返りの際には、必ず条件を揃えて比較することが求められると感じました。

データ・アナリティクス入門

仮説検証で切り拓く成功の道

問題整理のポイントは? データ分析を進める上で、What、Where、Why、Howという問題解決のステップを行き来しながら整理することが非常に大切だと感じました。こうしたステップを意識することで、問題を深く理解し、的確な改善策を導き出すことができると思います。今までプロセスを細分化して考えることを怠っていた分、今後はその重要性を再認識し、確実に実行していきたいと考えています。 テスト検証の極意は? 特に、A/Bテストにおいては、条件を揃えて1要素ずつ検証することが成功の鍵であると改めて実感しました。これまでステップを踏んで分析を進めることはできていたものの、動きながら仮説を試し、データを収集する視点が不足していたと感じます。今後は、常に仮説検証とデータ収集を並行して進める必要があると認識しています。 実施環境をどう見る? また、実際に業務でA/Bテストを実施する際、特定の店舗でのみ実施していたため、環境要因に対する配慮が不足していたと感じました。今後は、各店舗ごとの環境差を考慮した上で、より均等な条件でテストを行い、信頼性の高いデータを得られるよう努めたいと思います。

データ・アナリティクス入門

データ分析で広がる新たな視点と可能性

データの深意を探るには? 各データを深く掘り下げ、その背後に何が見えるかを考えることが重要だと感じました。数値からクリック率やコンバージョン率を計算することで、新たな視点から現状を考察できると思います。また、問題に関連する要素とそうでない要素を分けて考える対概念や、適切な判断基準を設けて各案を評価する過程の重要性を学びました。常に思考の幅を広げることを意識することが大切だと感じます。さらに、A/Bテストを行うことで結果を比較でき、適切に検討を進められることも分かりました。 学んだ知識はどう活かす? 自分の業務にすぐに活用できるかはまだわかりませんが、今週学んだデータの応用や対概念の考え方は役立ちそうです。3W1Hのステップを繰り返しながら、丁寧に分析していくことが大切だと改めて感じました。 採用手法は最適か? 実行可能な業務として、採用活動にもこの手法を取り入れられるのではないでしょうか。採用ページのクリック数と応募者数のデータを取得し、ファネル分析や離脱ポイントを特定した上で、A/Bテストを実施すれば、最適なコンテンツや応募フォームを判断できると思います。

データ・アナリティクス入門

グラフが語る数字の物語

グラフ化の効果は? データ分析では、まずグラフ化して数値を視覚的に確認することで、比較がしやすくなる点が基本だと学びました。これにより、数字の背後にある特徴や傾向が一目で把握できるようになります。 代表値の選び方は? 講義では、データの代表値として「単純平均」「加重平均」「幾何平均」「中央値」があること、そしてデータのばらつきを示す「標準偏差」の重要性を改めて認識しました。どの平均値を用いるかは、分析の目的に応じて選ぶ必要がある点も印象的でした。 必要な基礎理解は? 普段の業務では、無意識のうちにデータ収集やグラフ化を行っていたため、なぜそれが必要なのかを体系的に学ぶことができたのは大変有意義でした。講義を通して、さまざまな角度からデータを評価できる手法を身につけることができました。 多角的評価の理由は? また、クライアントや社内のデータを用いたマーケティングやプロモーションの計画では、ピクトグラムや棒グラフで全体感を把握した上で、単純平均だけでなく「加重平均」「幾何平均」「中央値」「標準偏差」などを組み合わせ、多面的な視点からの分析が重要であると実感しました。

クリティカルシンキング入門

数字が描く学びの軌跡

どうして可視化する? グラフなどを用いた「可視化」を意識することで、一次データをより細かく分け、隠れた傾向を発見することが可能になります。数字を味方につけることが、データの真実を浮き彫りにする第一歩です。 データ切り口の意味は? また、データを意味のある切り口で分けることの重要性も指摘されています。複数の視点からデータを検討し、活用することで、分け方一つで導かれる結論が変わる可能性を理解する必要があります。 見た目だけで判断? さらに、データの分解に際しては、結論を急がず、ぱっと見の傾向が必ずしも全体を示しているわけではないということに注意が必要です。ロジカルシンキングの基本として、MECE(漏れなくダブりなく)を意識し、無駄のない切り口で丁寧に分析することが求められます。 分解のコツは何? 具体例として、商品ごとの顧客層を分析する際には、年齢、性別、職業、購入時の時間帯や曜日など、さまざまな観点から分解を試みることが有効です。ただし、複数の切り口を用いる際も、ひと目での判断によって誤った解釈をしてしまわないよう、十分に検証する姿勢が大切です。

「分析 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right