データ・アナリティクス入門

平均値の活用で変わるビジネス戦略

平均値への新たな気づきは? 私はこれまで、単純平均値、中央値、標準偏差については書籍を通じて知識を得ていましたが、加重平均や幾何平均の重要性について十分に理解していませんでした。特にビジネスにおけるこれらの"平均"の概念の重要性に気づかされました。単純平均値では、表層に現れる数字とユーザーの実感が一致しない場合があり、「平均値(単純平均値)はあまり使えない」という固定観念を持っていました。しかし、その観念は、自分自身が適切な活用方法を知らず、また選択できていないことに起因していると気づかされました。 加重平均がもたらす変化 これまでは単純平均値を用いて、少額製品の評価が難しいと感じ、売上の大きい少数の製品に解析の重点を置いていました。しかし、今後は加重平均値を用いた分析を行うことで、少額製品の販売単価にも注目し、損益分岐点を明確にすることができるのではないかと感じています。 来期計画に反映する方法は? 現在、来期に向けた活動計画の策定を進めており、今回学んだ代表値の考え方を売上分析に反映させる予定です。これにより、前期とは異なるアプローチでデータを作成し、その結果を上位メンバー会議で審議する予定です。

データ・アナリティクス入門

課題解決を導く仮説思考の力

仮説構築フレームワークの活用法は? 仮説構築のフレームワーク(3Cや4P)を課題解決に活用し、実際に使うことで自分の思考のクセを理解しました。このフレームワークは何度も活用して定着させることが大切だと感じました。また、手元にデータがあるとすぐに分析を始めるのではなく、まず複数の仮説を立ててからデータを用いて検証する順番を強く意識する必要があると学びました。これは、私がデータがあるとすぐに分析に取り掛かるクセがあるためです。 依頼元とのコミュニケーションの重要性 各事業の依頼に対しては、目の前のデータだけで解決するのではなく、本質的な課題を見極めるために依頼元とコミュニケーションをとりながら仮説を立てていくことの重要性を感じました。今回学んだフレームワークを活用し、事業ごとに複数のフレームワークを使い分けながら仮説を広げていくつもりです。 伴走案件への仮説思考の応用法は? 来週から複数の伴走案件が始まる予定なので、課題に対して広い視野を持ちながら仮説の幅を広げていきます。多くの案件を同時に進行する中で、関心や問題意識を向上させると共に、課題の深掘りに差が出ないよう、仮説思考を実践していきたいと思います。

データ・アナリティクス入門

データ活用で未来を変える!実践的AB分析の学び

AB分析の学びとは? AB分析の考え方を学んだことは非常に参考になりました。以前の職場でGoogle Analyticsを使って広告を打っていた時、状況や変更条件を明確にせず、場当たり的に行動していたことを反省しています。 仮説を立てる重要性を知る また、問題解決の過程で仮説を立てることの重要性も学びました。これまではなんとなくデータを集め、目的が薄いままに対応策を練ることが多かったため、今回の学習でその姿勢を改める必要があると感じました。 長期的な効果検証の可能性 さらに学んだこととして、数か月単位で施策を変更するのは難しいものの、一年から数年単位で効果を検証することは可能かもしれないということです。例えば、入学後のパフォーマンスを分析して入試の内容を変える、といった具体例が上げられます。 必要なデータをどう見極める? 現在、大学内で取得しているデータについて、真に必要なものは何か、また不足しているものは何かを見極めたいと考えています。学生生活の構成要素を学業やサークル活動、就職だけでなく、より多くの要素に分解することで、学生のリアルな状況がより理解できるのではないかと思っています。

データ・アナリティクス入門

目的明確!多角的視点で読み解く

分析の目的は何? 分析とは、比較によって本質を浮き彫りにする作業であると再認識しました。分析の目的を明確にし、適切な比較対象を選ぶことが、納得感のある結果を導くための基本であると感じています。また、目的に応じた情報の見せ方が存在するという理解も深まりました。 情報整理の必要性は? ダイバーシティ推進の担当として、社内の属性割合や勤務実態の定量データ、そしてアンケート結果といった定性データを扱う機会が多い中で、まずは情報の用途や目的を明確にすることの重要性を改めて認識しました。必要な情報をより深く掘り下げ、検討していくことが今後の課題です。 多角的視点はどう? また、自分だけの視点に偏らず、他者の意見を取り入れることで、多角的な視点から情報を集約したいと考えています。こうすることで、より客観性の高い分析が可能になると実感しています。 透明な分析方法は? 一方で、分析の目的に応じた仮説設定が、恣意的に都合の良い情報操作につながるのではないかという懸念も感じています。今後の学びを通じて、この疑問に対する気づきを得るとともに、より透明性のある分析手法の習得を目指していきたいと思います。

クリティカルシンキング入門

MECEで魅せるデータ分析の力

MECEをどう意識する? MECEを意識することの重要性を学びました。まず、全体の定義をしっかり決めることが前提です。そして、「モレなく、ダブリなく」を心掛け、仮説を基にさまざまな切り口で分析を進めることが大切です。 データ分析の本質とは? 分析の有用性についても深く理解しました。ただ単に目の前のデータを眺めるのではなく、データを加工し、グラフなどで視覚化することで判断基準が明確になります。例えば、複数年度にわたる人員計画策定においては、現状の人員の将来的な年齢や職責の推移を様々な観点で視覚化し、どの世代の中途採用を強化するべきか分析していきたいと考えます。この分析を通じて、異なる雇用形態を持つ人員の流れを分かりやすく可視化できればと思っています。 効率的なデータ可視化のコツ さらに、実際に手を動かし、データを分解したり、グラフ化することで可視化する努力が重要です。そして、自分以外の視点や意見を取り入れて俯瞰的に見つめることも忘れずにいたいです。全体の定義を決め、モレをなくすため四角を埋めることを意識しながら、自問自答を繰り返し、誰が見ても分かりやすいデータを提供できる資料作りを心掛けたいと思います。

データ・アナリティクス入門

数字を紡ぐ、現場からのヒント

どう分析すれば良い? 「やみくもに分析しない」という言葉を目にし、データ分析の奥深さを再認識しました。現在、チームで検討中の施策に対し、まずは営業担当へのインタビューを実施し、そこで多くの意見が寄せられた内容については、全体を対象にアンケートを行う計画です。 数字の根拠は何故? 数字の根拠をもとにストーリーを作り上げる手法は、相手に響く説得力を持たせる上で非常に重要であると改めて感じました。この考えを念頭に置きながら、実務におけるデータ分析のアプローチをさらに熟考する機会となりました。Week6で総復習を予定していた中で、新たな気づきを得ることができたのは大きな収穫でした。 実務データの秘訣? また、AIコーチングからは、実務における定性データ(インタビューやアンケート)と定量データとの整合性や、数字の根拠から効果的なストーリーを作るための仮説検証のプロセスについての問いをいただきました。まずは、アンケートを通じて定量データを効率よく収集できる仕組み作りに取り組むとともに、過去から蓄積している定量データの中から、今回の営業担当へのアンケートに活用できるものがないかを洗い出してみようと思います。

データ・アナリティクス入門

仮説と比較で拓く学びの扉

良い比較って何? 「分析の本質は比較である」という考え方を学び、良い比較を行うためには「条件を揃える」ことや「分析の目的」に沿った比較対象を選ぶことの大切さを実感しました。 どうして視野を広げる? グループワークでは、これまで自分では思いつかなかった観点が提示され、「そんな考え方があるのか」と新たな視野を広げることができました。分析の仮説立ての際にも、さまざまな意見から多くを吸収し、視野を広げて考える重要性を再認識しました。 データは役立つ? また、売上向上の施策を検討する際には、これまで感覚に頼っていたアプローチを改め、「データ分析の目的を明確にすること」や「仮説を立て、意味のあるデータで比較すること」を実践することで、より効果的な施策へと結びつけられると感じました。たとえば、あるKPI指標を追う際、「特定の行動をしている人」と「そうでない人」とで進捗率を比較することにより、具体的な違いを把握できる点は非常に示唆に富んでいます。 学びをどう活かす? この講座で得た学びを、実際の現場でどのように活かしていくか、実践してみた結果の成功事例や失敗事例も含め、これからも共有していきたいと思います。

データ・アナリティクス入門

視野が広がる!見える化の奇跡

視野はなぜ狭く? 全回のライブ授業を通じて、自分の傾向が明確になりました。経験則の範疇で物事を考えてしまうために、視野が狭くなっていることを実感するとともに、かつて学んだ内容も十分に活かしきれていないことが分かりました。 見える化に何を感じ? 授業で取り入れられていたプロセスやビジュアル化の工夫は、自分の思考の幅を広げるヒントになりました。一旦自分の発想を見える化することで、整理もしやすくなると感じました。 戦略はどこへ向か? 業務において、データ分析から戦略策定への取り組みは欠かせないため、今回の学びを活かしながら注意点を整理し、実際に見直していきたいと思います。実績データを時系列で比較するなど、どの視点に重点を置くべきか、どこまで深堀りすべきか、その必要性を常に問い直す姿勢で取り組むことが大切だと感じました。 図解は何の助け? 今後は、初期段階からのビジュアル化を心がけ、振り返りながら適切な切り口や判断基準を繰り返し検討していきたいと思います。また、これまであまり活用してこなかったグラフ化にも意識的に取り組み、仮説も含めた考察を関係者と共有し、ディスカッションへと発展させていきたいです。

デザイン思考入門

顧客の声が未来を創る

顧客の声をどう活かす? 顧客とのコミュニケーションを活用する考え方は、営業提案の際に顧客からのフィードバックを積極的に求めることで、具体的な課題や求める解決策を明らかにできる点が魅力的だと感じました。顧客が直面する問題の背景を深堀りすることで、提案に反映させるアイデアが生まれる可能性を実感しています。また、社内でのブレインストーミングやアイデア出しのセッションでも、従業員の体験や市場トレンドに基づいた意見交換を行うことで、新たな視点が得られると考えています。 直接対話で何を学ぶ? さらに、顧客と直接対話することで、従来のデータ分析だけでは捉えきれなかったニーズや感情を把握できることに気づきました。具体的な課題を共有するプロセスは、提案の精度向上や信頼関係の構築に大いに寄与することが分かりました。 発想の自由さは何故? また、デザイン思考の「発想」プロセスでは、顧客のニーズや課題を十分に理解し、自由な発想を促すことの重要性を学びました。実際の顧客の声に基づいて多様な視点を取り入れることで、創造性が一層高まり、プロトタイピングを通じて迅速に形にすることが、実践的な解決策を生む鍵であると再認識しました。

データ・アナリティクス入門

ロジックで紐解く成長のヒント

問題をどう洗い出す? 今回の学習では、まず何が問題であるかを洗い出し、その問題箇所を明確にすることの重要性を学びました。問題の原因を詳しく分析し、対策を検討・実行するプロセスや、結果から各要因を考察する点、さらに理想と現状のギャップを埋めるための工夫が大切であると実感しました。 分析手法は何か? また、分析手法としてロジックツリーやMECE分析、さらに階層分析と変数分析の活用が有効であることを学びました。これらの手法を用いることで、データの整理がしやすくなり、効率的な分析が実現できると感じます。 実例で何を発見する? 具体例として、交通系ICカードの決済データを利用し、加盟店やキャンペーンごとの売上分析に応用できる可能性があると考えました。売上分析においては、年代、性別、居住地、曜日などの視点で検証し、来店回数や決済金額の傾向も踏まえて全体的な分析に役立てたいと思います。 量と質のバランスは? 最初の段階では、質よりも量を意識して経験値を積むことが重要と考えています。質も適度に保ちながら、実践を重ね、ロジックツリーやMECE分析を積極的に活用してデータ分析に取り組んでいきたいと思います。

クリティカルシンキング入門

データの読み解きで広がる新たな視点

「眼に仕事をさせる」とは? 「眼に仕事をさせる」というキーワードが強く印象に残りました。データの素材を抽出した後、それをどのように分解して分析するか、「本当にそうなのか?」と丁寧に考えることの大切さを学びました。手を動かしてグラフに加工し、分解の方法を工夫し、分析結果を基にさらに複数の切り口で見直してみる。こうした広がりや深まりを追求することが、業務遂行上大切だと感じました。 顧客満足度を高める方法は? この考え方は自身の業務に限らず、顧客満足度を高めるための分析をメンバー間で進める際にも重要です。多くの切り口から傾向を探ることで、データ上から納得できる顧客感情の変化を捉え、ニーズに応えるストーリーを共に描きたいと思います。 視覚化の重要性は? グラフにして視覚化することで、数値の羅列では見えなかった傾向が見えてきます。しかし、多忙の中で実行できていない現状があるのも事実です。時間の制約がある中でも最適な分析を尽くすためには、「別の視点から見るとどうなのか?」と語り合える余裕を持つことが求められます。高い視座と粘り強さを有する強いチームづくりに向けて、今回の学びを生かしていきたいと感じました。

戦略思考入門

集合知を活かした新戦略の発見

競合データをどう見る? マーケティング部門との会議で競合分析のデータを基にした今後の戦略方針が示されることがありますが、彼らがどんなデータを元に議論しているのか、理解できました。今後はフレームワークを意識して使うことを心がけたいと思っています。そして、多くの人が一緒に考えることで生まれる「集合知」が非常に有効であることも学びました。 フレームの真実は? これまで、フレームワークは営業部門専用のものとの先入観がありましたが、実際には面接の事例のように幅広く活用できることを知りました。新商品の投入には大きな時間と費用がかかる業界において、自社の強みを活かせる分野を強化し、他社がまだ参入していないニッチな分野にも積極的にチャレンジしていきたいと思います。 計画はどう伝わる? また、プロジェクト計画を策定する際には、自分たちがやりたいことだけをリストアップするのではなく、経営者の視点から見た利益や強みを活かす方法、さらには将来的な変化による影響も考慮していきたいと考えています。チーム会議の頻度が高い中で、「集合知」の重要性をメンバーに共有し、より活発なブレーンストーミングを促進していきたいと思います。

「分析 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right