データ・アナリティクス入門

どのデータを集めるかが未来を決める

比較の重要性を再考する 分析の本質は比較であることを学びました。これまで、比較対象の選定や要素の統一が不十分だったため、正確な分析ができていなかったと感じます。特に、生存者バイアスがかかってしまうことが多かったことを反省しています。 実証実験で得る結果は? 新規事業を創出する部門に所属しているため、秋から行う実証実験ではデータの適切な分析と比較対象の正確な選定を心掛け、意味のある結果を得たいと考えています。また、取得したいデータの設計も行い、目的に合った実証実験を行いたいと思います。 適切なデータ設計とは? 実証実験の目的を再確認し、成功と見なされるために必要な情報を考えます。どのようなデータを取得すればよいかを設計し、それを企画に反映させます。分析の本質は比較にあることを常に念頭に置き、適切な比較対象を設定することを意識して進めていきたいです。

データ・アナリティクス入門

受講生が実感する学びの変革

目標はどう意味づけ? 目標設定は、データ分析のみならず、学び全般にとっても非常に重要だと再認識しました。受講前に描いていた理想像よりも、学びを終えた今の自分は実践できることが増え、単なる分析のプロから、ビジネス現場で分析手法を効果的に活用するプロへと成長できたと感じます。 活かし方はどうして? この学びは、日常のあらゆる業務に活かしていきたいと思います。データ分析の知見が、問題解決や新たな施策の立案に大いに役立つと理解したため、業務全体でその手法を意識していくつもりです。 従来手法は適切? また、現在の担当業務を見直すことで、従来の方法が本当に適切であったのか、見逃している課題はなかったのかを改めて点検していこうと考えています。その結果を踏まえ、今回の受講で得た実体験の知見を活かし、今後必要となる知識やスキルの習得にも取り組んでいきたいです。

データ・アナリティクス入門

データで切り拓く学びへの一歩

ライブ授業で何を得た? ライブ授業に参加して、データ分析の必要性を改めて認識しました。普段はデータを扱う機会が少ないのですが、分析を日常的に行っている方々から手法を学ぶことで、非常に参考になりました。また、ある設問を通じて、固定観念にとらわれず情報から直接課題を読み解く重要性を実感することができました。 困難にどう対応する? 問題や困難な状況に直面した際は、データをしっかりと集め、論理的に順序立てて分析する手法が重要であると学びました。これまで名刺の発注から納品までの流れは大まかにしか把握できていなかったのですが、今後は過去の発注履歴に発注日を記録し、統計的に納品までの期間を明らかにしていく予定です。全体の名刺作成フローを見直し、どこにボトルネックがあるのかを把握した上で、その原因となる要因を具体的なデータをもとに分析していきたいと感じています。

データ・アナリティクス入門

妥協を捨てた学びの軌跡

現状の問題確認は? 問題を特定する際は、What、Where、Why、Howの観点から確認する重要性を改めて感じ、ABテストの存在も初めて認識しました。また、分析を進める中で「このくらいでいいや」という気持ちを捨て、徹底的に考え抜くことの大切さを実感しました。 企画実行はどう? 自ら企画を立案する際も、同じ観点で問題を明確にし、仮説を立て、データに基づいた検証を徹底することが必要だと考えます。そうすることで、企画の実行可能性が高まり、周囲からの賛同も得られると感じています。 学びをどう活かす? これまで学んだ内容を丁寧に振り返り、積極的な実践を心がけたいと思います。業務が繁忙になると学んだことをおろそかにしがちですが、本講義で得た知識を振り返り、日々の業務にどのように適用できるかを考える時間を常に確保していきたいです。

データ・アナリティクス入門

数字を味方にする学びの第一歩

数字の意味は? 数字自体は難解なものではなく、まずは苦手意識を払拭することが第一歩だと感じています。分析という行為は、なぜそのような結果になったのか、どのポイントからその結論に至ったのかを明快に説明し、他者を説得するための有力な材料になるからです。 どのように慣れる? そのため、初めは身近な数字に触れ、慣れ親しむことが大切だと考えています。次第にビッグデータを扱いながら、実践的な分析スキルを磨き、根拠となる資料を用いた分析を行っていきたいと思います。誰が見ても理解しやすく、納得できる説明ができるように心がけることが目標です。 偏らず分析するには? また、捉える数字を正確に把握するためには、一面的な見方に偏らず、あらゆる角度から分析する姿勢が重要だと実感しています。これにより、より具体的で説得力のある分析が実現できると信じています。

データ・アナリティクス入門

数字の裏側に広がる発見

データ分析ってどう? 平均だけでなく、分散や標準偏差も組み合わせることで、分析対象を正確に把握し、誤った結論に至らないように努める必要があると感じました。加重平均を適切に利用するほか、ビジュアル化によってデータの様子を把握しやすくすることが、説得力のある分析には重要です。 人事評価はどうなる? また、人事領域では、様々な属性を持つ対象を扱い、各属性の人数が限られている場合もあるため、信頼性のある数値を導き出すには、加重平均や標準偏差の手法が必要不可欠だと考えました。 数値整理のコツは? これまでの講義で学んだ分析対象を要素に分解し整理する手法を活かし、分析したい要素に応じて正しく数値化できる状態を目指します。そのためには、これまで集計した数値に標準偏差を導き出し、改めて整理することが重要だと実感しています。

クリティカルシンキング入門

柔軟思考で挑む新しい一歩

思考の整理はどう? 論理的思考や多角的な視点、適切な情報評価の大切さを改めて認識しました。情報の背景を正確に把握し、正しい問いかけができることで、複数の観点から物事を分析する力を養う必要があると感じています。 決断の根拠は? また、これまでの経験や情報に頼るだけでなく、判断の正確性を意識して計画を進めることの重要性を実感しました。一方で、考え込むあまり思考時間が長引き、スピード感が失われるリスクにも注意が必要だと感じています。 実行方法はどうなる? 今後は、リスク分析や問題解決、データ分析において、学んだ手法を活用しながら、必要な情報を漏れなくかつ重複なく整理して対応していくつもりです。思い込みやバイアスを排除するための具体的な方法はまだ確立していませんが、試行錯誤を重ねながら取り組んでいきたいと考えています。

データ・アナリティクス入門

仮説で広がる学びの未来

仮説思考はなぜ重要? データ分析において仮説思考が重要であると実感しました。しかし、まだ完全に身についていないため、今後の業務の中で積極的に意識し、訓練していく必要があると感じています。理解したつもりでも、実際に言葉にして表現する際には苦労することもありました。 経験則から何が変わる? 今回の学びを生かし、所属する部門で担当している市場動向や契約に関するデータの収集と分析に、従来の経験則に基づく判断から仮説思考に基づいた立案へとシフトしていきたいと考えています。 言語化はどうする? さらに、言語化の訓練を重ねることで、仕事はもちろん日常生活においても仮説思考プロセスを意識して課題に取り組む習慣を身につけたいと思います。そして、適切な結論を導き出すために、さまざまなフレームワークや手法の活用を習慣化していく所存です。

クリティカルシンキング入門

新しいデータ分析手法で業務効率化に成功!

データ加工の基本技術とは? データの加工の仕方、分け方の工夫、分解の注意点の3つを学びました。特に注意が必要だと感じたのは、分け方の工夫と分解の注意点です。手を動かしてそれらしいデータが見えた際にすぐに結論を出してしまうと、誤った判断に繋がる可能性があると感じました。 商談データ分析の新アプローチ? 私の業務では、特に商談や受注に関するデータの分析を担当しています。これまでとは異なる切り口でデータを集計し、同時に新しい仮説をもとにデータを分解してみることは、すぐに実践できそうです。 仮説を活用したデータの再確認 商談や受注データの吸い出しを行う際には、常に新しい仮説を持って取り組むことが重要です。そして、一見それらしいデータが見えても、一段階深く集計の漏れや新しい切り口、データの正確性を再確認することが必要です。

データ・アナリティクス入門

仮説と五視点が導く仕事の知恵

どうして5視点が必要? 今回の学習で特に印象に残ったのは、比較分析を行う際にプロセス(仮説)が必要であり、さらに5つの視点(インパクト、ギャップ、トレンド、ばらつき、パターン)と3つのアプローチ(グラフ、数字、数式)の存在が重要であるという点です。 進める分析手順は? 分析のプロセスは、まず目的(問い)を明確にし、問いに対する仮説を立て、必要なデータを収集し、そのデータをもとに仮説を検証するという手順で進められます。これまで、どの視点を重視するかについて特に意識していなかった自分にとって、今後はこの5つの視点から必要なものを選び、意識的に分析を行う癖をつけることが大切だと感じました。 実務でどう活かす? 仕事のあるゆるシーンにおいても、自分の考えや判断の根拠として分析を活用していきたいと思います。

データ・アナリティクス入門

分析で見つけるビジネス成長の鍵

明確な分析目的を設定するには? 分析を行う目的を明確にし、必要なデータを適切に特定する重要性を再確認しました。指示する側とされる側の間で、作業前に前提条件にずれがないか確認する必要性も理解しました。このプロセスは、KPI設定や検証の際にも当てはまります。設定した目標が会社の方針と一致しているか、常に確認することが求められます。次回の対策を考えるためには、分析に必要なデータにズレがないかを検証し、そのデータが本当に有効かどうかを追求します。 ターゲットの再選定は必要? また、会社としてターゲットをどこに設定するかを再選定する必要があります。現在の顧客の業種別売上傾向やエリア別売上を詳細に分析し、各エリアの特性や注力すべき業種を見極めます。また、機会損失が発生している箇所を特定し、適切な対策を講じることが求められます。

データ・アナリティクス入門

仮説×データで未来が変わる

仮説とフレームワークは? 本講座では、問題解決のプロセスにおいて、スピードと精度を向上させるために、仮説を立てながら分析を試みる重要性を学びました。また、3Cや4Pといったフレームワークを効果的に活用する方法も理解できました。 必要データはどうする? 仮説に基づいて必要なデータを抽出し、場合によっては新たにデータを取得する必要があることも実感しました。既存のデータ分析にとどまらず、サーベイの実施などによって分析に不可欠な情報収集にも役立てることができると感じました。 多角的観点は何故? さらに、分析の視点は単に数値やデータを検討するだけでなく、データ整備や企画立案の段階でも重要であるという気づきを得ました。今後、業務のあらゆる場面でこれらの視点を取り入れながら取り組んでいきたいと思います。

「分析 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right