戦略思考入門

選択と差別化の成功と失敗を学ぶ

どうして失敗を重視? 規模の経済や多角化について、成功例だけではなく失敗例も学びました。「なんとなくよさそう」という選択肢に飛びつかず、「うまくいかないケースはないか?」を意識して確認する必要があると感じました。 補足はどう工夫? 総合演習では、情報が足りない時にどのように補うかを考えながら取り組みました。日常生活でも、安易に選択してしまうことがあるのかもしれないと感じました。選択するかしないかを広い視野でとらえ、その背景を分析し、メリットとデメリットを正確に把握する必要があります。 どう差別化実現? 現在取り組んでいるペーパーレス推進の中では、「捨てる」ことと「他社との差別化」を両立する施策を意識しています。業界内の動向だけでなく、他業界での先行事例も注視しています。「なんとなくよさそう」で判断せず、定量的データを用いて根拠のある提案を行うよう努めています。 何を見極める? 定量的データを活用し、同業界だけでなく他業界の事例も広く集め、自社に活用できる部分がないかを検討しています。その際、自社の差別化につながるかどうかという視点を重視しています。また、ペーパーレス実現後の影響も考慮した施策を構築しています。

クリティカルシンキング入門

データ分析で見つけた新たな視点

データ加工とMECEは? データの加工や分け方、そしてフレームワークについて学びました。提示された情報をただ受け入れるのではなく、その背後に隠された情報を見抜く重要性を認識しました。特にMECEの活用方法について考える機会がありましたが、必ずしもMECEにこだわる必要があるのかという疑問も感じました。MECEが手段であり目的でないことを意識することが大切です。 戦略調査の目的は? マーケティング戦略の策定では、現在のサイトへの流入経路や登録経路を様々な角度から調査しました。特に、業歴が長い会社の場合、リピーター率が高いのではないかという仮説を立てて調査し、既存顧客からのフィードバックにどのような特徴があるのかも分析しました。また、成果を上げた新人の要素を細分化して理解を深めました。 連携の秘訣を探る? 最初に関係各所と連携して分析プロジェクトを立ち上げました。プロジェクトに興味や共感を持った人々から順に説明の時間を頂いてミーティングを行い、データ分析によってどのような示唆が得られるかについて話し合いました。その過程でスモールウィンを設定し、うまくいった内容を共有してより多くの人々を巻き込んで進展を図りました。

データ・アナリティクス入門

データ分析から始める業務効率化のアイデア集

分析はどのプロセスから始める? <印象に残った内容> ・プロセスに分解し、各プロセス毎に数値を見る ・A/Bテストの前に目的と仮説を明確にする ・データ分析はまず身近な課題から着手する A/Bテストの代替案は? <感想> A/Bテストはオンラインサービスとの相性が非常に良いが、対面サービスやコストの問題で簡単に実施できない場合の代替案が気になりました。 残業時間削減へのアプローチ ①社内で使用しているSFA(営業支援システム)の切り替えに伴い、入力画面のインターフェース検討においてFigma等のツールを使ってA/Bテストを実施し、手戻りが無いようにする。 ②今後の人員削減に伴い、業務の棚卸しを行う。 この切り替えは少し先になるため、思考訓練として自分の残業時間を減らすための施策を考えました。 まず、業務の洗い出しと各業務のプロセスの分析を行います。そして、以下の代案を検討します。 外注や自動化は可能? ・外注の可能性を探る  ・無料の外注が可能か  ・有料の外注が利用できるか ・自動化を進める ・不要なプロセスを廃止する 以上のステップを踏み、効率的かつ効果的な業務運営を目指したいと考えています。

データ・アナリティクス入門

フレームワークが導いた学びの光

原因解析のコツは? what→where→why→howの順に問題を捉えることで、原因解析を体系的に進めやすくなります。フレームワークを利用することで、見落としなく検討でき、説明もしやすくなる点が非常に役立ちます。また、自分自身の思考のクセを理解することで、視野が偏らないよう意識することも大切です。情報分析を通じて、傾向を把握し、結論へと近づくプロセスは非常に有益です。 合意形成の秘訣は? 通常業務の場では、まずイシューを明確にし、その上で他者と合意形成を図ります。次に、多様なアイデアを出しながら仮説を立て、検証を重ねることで、より説得力のある説明が可能になります。単なる常識的な案ではなく、分析結果を生かしながら良い案を生み出すことに挑戦することが重要です。 重要なポイントは? 例えば、コストダウン施策の検討においては、膨大なデータの中からどの部分に着手するかを問い、自分にとって最重要と思われる情報に絞って集中的に分析します。仮説を立て、検証を繰り返す過程は、開発業務と同様の手法で進められます。そして、問題解決のためにどのような手段が最適かを考え、他者にも分かりやすく伝える工夫が、成功へと繋がるポイントとなります。

データ・アナリティクス入門

標準偏差が拓く学びの新視点

データの全体像はどう捉える? 標準偏差を活用することで、データのばらつきを正確に把握でき、分析の全体像を掴むきっかけとなりました。平均値だけで物事を判断しないためにも、中央値など他の指標を併せて見ることの大切さを実感しています。 グラフで視覚的に理解できる? また、ヒストグラムは各グループの構成比を視覚的に捉えるのに非常に役立ちます。特に、世代などX軸の単位が明確なものの場合、グラフ化することで理解しやすくなると感じました。売上実績の分析など、データのばらつきを確認することで、より正確な施策の検討が可能になると考えています。 苦手意識は克服できる? 個人的には、以前は標準偏差に対して苦手意識がありましたが、全体のばらつきをとらえる重要な指標として積極的に活用する決意を新たにしました。さらに、ヒストグラムのように一目で内容を把握できるグラフ作成を通じて、プレゼンテーション時の相手の理解促進や、意思決定のスピード向上に貢献したいと思います。 分析の認識共有はどう進む? 今後の日々の分析においては、標準偏差やその他の代表値を取り入れ、データ全体の認識を共有することで、正確な判断に結びつけていきたいと考えています。

データ・アナリティクス入門

選ぶ力が分析を変える

手法選択は何が肝心? 様々なアプローチからデータを検討することで、仮説の精度が向上することを実感しました。しかし、すべての手法を無差別に試すのは非効率であり、分析の目的に沿った適切なアプローチを選ぶことで効率よく進めることが大切です。 代表値の選び方はどう? また、代表値には多くの選択肢が存在するため、データの性質や分析目的に応じた計算方法を選ぶ必要があります。一定の経験を重ねれば、どの代表値が最適かパターンを把握しやすくなると思います。 グラフ選びはどう判断? 製品の計測データなどを分析する際は、適切な代表値を選ぶことに加えて、標準偏差も併せて算出することが求められます。レポートを作成する際には、分析目的とデータの特性を踏まえて適切なグラフを用い、他者の手法に対しても改善の余地がないか検討する姿勢が大切です。 再検討の意義は何? これまで、代表値として単純な相加平均に頼ることが多かったため、今後はデータの性質を再検討し、その選択が本当に妥当なのかを吟味するようにしたいと考えています。また、グラフの選定についても感覚に頼るのではなく、目的を明確にした上で最適な可視化方法を選ぶよう努めます。

データ・アナリティクス入門

フレームワークを使いこなしデータ分析力を高める方法

フレームワークの活用法をどう高める? コンサルティング業務全般で役立つ3Cや4Pのフレームワークは、日々の業務で活用しています。しかし、反論を排除するデータまで踏み込めていない場面があるのが現状です。現状の問題や課題を批判的に捉える視点を持ち続け、本質的な課題や仮説・回答を考え抜くことを諦めない姿勢が重要です。 データソリューションの資料作りにおけるポイントは? 現在作成中のデータソリューションサービスの営業資料には、データ分析の手法やその需要性を盛り込みます。フレームワークは組み合わせて使うことで本質に近づくことができるため、シャープな推論ができる頭の使い方が求められます。そのため、フレームワークを複数組み合わせて使う力を向上させることが重要です。 フレームワークの判断力をどう養う? 具体的には、以下を実行します。まずは分析でよく使うフレームワークを単体で使いこなせるようにします。その上で、単体で使いこなせるフレームワークの数を増やします。そして、組み合わせることによって効果を増幅させるパターンを覚えます。常にどのフレームワークを組み合わせるのが最適かを考え、最適なパターンを選べるよう、判断力を養っていきます。

マーケティング入門

売り手と買い手視点の融合で新たな映像体験を

講義で何が響いた? 今週はライブ講義の総まとめがありました。その中で、ビジネスに関わる自分たちが売り手であると同時に、買い手でもあることを忘れてしまいがちだという意見が他の受講生から出され、非常に共感しました。買い手としての視点を客観的にとらえることは、大きなリソースになり得るのだと強く感じました。 感情で分ける理由? この視点を自分の仕事や業界に当てはめると、映像作品のターゲット設定に役立つと考えています。従来のgenderや年齢でのターゲティングに加えて、視聴者がコンテンツに求める感情(例えばスリル、ワクワク、笑い、感動など)に基づいて新たな視点でセグメントを導入することを検証してみたいです。 調査はどう進める? そのために、消費者調査チームと連携し、より効果的なセグメント設定や調査方法を検討する予定です。また、データ分析チームと協力して、過去の視聴傾向を嗜好で分析することも考えています。さらに、コンテンツ消費はお金よりも「時間」の消費であるため、タイパを重視する世代や時代の傾向にも対応できるよう、プロダクトの視点で作品を見ることで得られる感情を示す工夫をするなどの方法を模索していきたいと考えています。

アカウンティング入門

アカウンティングで広がる新たな視点

アカウンティングの理解を深めるには? アカウンティングの重要性や、事業活動の意味、事業活動を定量化する指標について、今まで漠然と理解していたことがしっかりと言語化され、体系的に整理されました。これにより、頭の中にフレームが形成され、とてもすっきりとした気持ちです。このフレームに情報や知識を加え、自分の中で考えを整理していくのが非常に楽しみです。 自社のP/LとB/Sをどう活用する? まず、自社のP/LとB/Sを読み解けるようになり、俯瞰的な視点で自部署や他部署の事業活動を再考したいと考えています。その後、競合他社のP/LやB/Sを分析し、自社と比較することで、改善や成長のポイントを見つけたいです。 理解を深めるためのアプローチは? 本講座を通じて、すべての内容をしっかりと理解し、疑問点がない状態で修了したいと考えています。その上で、自社のデータを読み解く際に生じる不明点については、上司に相談したり、質問の機会を作りつつ理解を深めたいと思います。競合他社の分析に関しては、特定の企業をピックアップし、理解を深めたいです。また、アカウンティングに詳しい周りの方々に声をかけ、比較検討会の実施を提案したいと考えています。

クリティカルシンキング入門

社員研修の見直しで業務効率アップへの道

イシュー設定の重要性を認識 イシューから考えることの重要性を認識しました。施策を考え始める前に、まずイシューを明確かつ具体的に立てることが大切です。これまでに学んだデータの分析・加工方法を活用し、様々な角度からイシューを検討して特定することが必要です。 なぜ研修が必要なのか? 現在の業務において、人事施策、例えば研修内容を検討する際、研修を実施することが目的となりがちでした(= 手段の目的化)。そうではなく、「なぜ研修が必要なのか」を考え、社内のイシューを様々な角度から抽出したうえで、その解決方法として研修が適切ならば研修を行うべきです。しかし、研修以外が適切と判断される場合は、研修を行わない選択も必要だと感じました。 社内イシューをどう特定するか? 社内・現場のイシューを的確に把握するために、従業員へのアンケートや管理職への個別ヒアリングを通じて、イシューの特定を丁寧に行っていきたいと考えています。イシューの特定には、その根拠を具体的かつ明確に説明し、そのうえで研修が適切な解決策なのかを検討します。研修またはその他施策により、特定したイシューの解決を行っていきます。まずは今週から取り組むこととしました。

クリティカルシンキング入門

課題を「分解」してデータを見落とさない秘訣

解像度向上の手法とは? データの解像度を上げる手法をいくつか学びました。「全体像をとらえる」ことで近視眼的な視点から脱却し、「分解」を積極的に取り入れることで、課題や問題をより具体的に抽出することが可能です。漏れや抜けをなくすことが、一見遠回りのように見えても、結果的には最も効率的な方法であると感じています。 異なる視点での分析の重要性 売上分析や時間帯分析などを行う際には、ただ数字を並べるのではなく、違う角度からの見え方を取り入れることで、見落としや抜けを防ぐことができると考えています。プレゼンの機会があった際も、通り一遍の見方ではない切り口を提案することで、新たな課題を抽出することができるのではないかと感じています。 数値報告での注意点は? 月例のミーティング用に数値報告の素材を提供する際は、以下の点に注意しています: - 並べた数字を別の視点で並べ替える。 - 補完できる部分がないか同僚に相談し、思考や見方の偏りに気付く。 - すでにグラフ化されているものについては、異なる切り口で見せ方を検討し、恣意性がないか確認する。 これらの工夫により、より具体的で効果的なデータ分析が可能になると実感しています。

データ・アナリティクス入門

データ分析の視点で課題解決を探る

データ分析で大切な視点とは? データ分析における比較の重要性を学びました。特に、比較対象をゴールに対して適切に選定することの重要性を実感しました。また、目の前にあるデータだけで判断することの危うさも理解しました。これは生存者バイアスの影響です。存在しないデータを考慮することが大切であり、今目の前にあるデータだけで課題解決になるのか、一度立ち止まって考えることの重要性を感じました。 仕事の中でのデータ活用法 私の仕事は、様々な事業部門からのデータ分析依頼に対応することです。その際、依頼されたデータそのままに100%応えるのではなく、そのデータで本質的な課題が解決されるのか、他の視点から分析する余地がないか、など多方面の視点を持つことが求められます。また、新たなデータ取得も視野に入れ、依頼主とともに問題解決に向けて進めていきます。 視点を広げる提案の予定は? 現在対応中の案件では、特定のデータソースを特定の視点から可視化していますが、これは単なる時短や作業効率改善だけではありません。事業部門の本質的な課題である収益性向上や利益改善に向けて、8月内に依頼元にヒアリングし、別の視点からのデータ活用を提案する予定です。

「分析 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right