クリティカルシンキング入門

数字が語る真実と見えない可能性

数字分解で何が見える? 数字を分解することで、今まで見えなかったものが見えてくることに改めて感動しました。しかし、正しくデータを分析するためには、多くの項目を分解することが重要です。たとえ何も見えなかったとしても、それ自体が「見えなかった」という情報を得られる点が印象に残りました。 グラフで何が見える? また、数字をグラフなどで可視化することで、視覚的に理解できることの重要性を再認識しました。 業務分析の深さは? 私は現在、業務の取り組み状況を分析し、弱点を教育する部門に所属しています。分解できる数字は限られていますが、その中で複合的に分解を繰り返し、表面的な分析にとどまらないよう心掛けています。これにより、真の課題を明らかにし、教育の内容や方針を考察できます。 教育方針の決め方は? 2025年度の教育方針を考えるにあたって、まずは12月までに大枠を検討します。さらに、詳細な教育方針や内容については、対象層に分けてチーム内でよく検討し、1月中旬までに考えます。その後、上司の意見を取り入れてブラッシュアップし、最終的には3月初めに発信できるよう進めていきます。

クリティカルシンキング入門

問題の本質を捉える力を磨こう

本質はどう見える? 課題解決において、目の前の問題に直接取り組むのではなく、本質をとらえてイシューを明確にすることの重要性を感じました。これを実現するためには、物事を多角的に分析する必要があります。また、WEEK1からの学びをすべて振り返ることが今回の学びにつながると感じたため、再度復習をしようと考えました。 処方データの示唆? 医師への処方拡大を検討する際には、処方データや医師の治療方針などから課題を特定します。薬剤の処方データを扱う際には、複数の観点からデータを分解し、適切なグラフで傾向を示します。その後、イシューを特定し、実施すべき施策を決定します。 対象エリアは? 講演会を企画する場合には、対象エリアのデータを再確認して、取り組むべき内容について検討します。企画書を作成する際には、この情報をもとに具体的な内容を決定します。 計画の根拠は? 上長への活動計画の報告においては、担当施設の現状をデータにより明確化し、ボトルネックを明らかにした上で、なぜその計画に至ったのかを説明します。こうしたアプローチを取ることで、本質的な課題解決を進めることができます。

データ・アナリティクス入門

数字と仮説のドキドキ分析

どのデータが最適? 分析とは「分析は比較なり」という考えを基本に、どのデータを使い、どう加工し、何を明らかにするかを吟味する作業です。各種データに適した加工方法やグラフの見せ方が存在するため、やみくもに加工するのではなく、目的に合わせた手法を採用することが大切です。 目的と仮説は何? ビジネスデータの分析においては、データに取りかかる前に必ず「目的」と「仮説」を明確にする必要があります。プロセスは、まず具体的な仮説の設定から始まり、既存や新たなデータの収集、集計や代表値の算出、さらにはグラフを用いた加工を経て、聞き手が一目で理解できる形にまとめ上げるという流れで進められます。数字に基づくストーリーづくりが成功の鍵となります。 3C視点で何が見える? また、1つの事象を分析する際には、シンプルな課題であっても市場・競合・自社という3Cの視点を用いることで、当初は見落としていた要素が浮かび上がる可能性があります。意識的に3C分析に基づいて仮説を抽出することは、グループワークを通じて他者の視点を取り入れ、個人の思考力の限界を補いながら精度を高める効果的な手法と言えます。

データ・アナリティクス入門

挑戦で切り拓く統計の世界

平均値の使い方は? 普段は代表値や単純平均を活用して概ねの状況把握に努めています。加重平均や中央値も業務の中で用いられている印象ですが、幾何平均や標準偏差に関しては、知識としてはあるものの実践する場面が少なく、具体的な事例を通じて使いこなす機会が今後の課題だと感じています。 ばらつきの見える化は? 特にばらつきに関しては、標準偏差の数値だけでは理解しにくいため、ビジュアル化して整理することが重要だと思います。ビジュアルで示すことで、各切り口からトレンドを読み取りやすくなり、自身だけでなく他者にも理解してもらいやすくなると感じます。 幾何平均はどう活かす? また、幾何平均については、実践での理解を深める努力が必要だと感じます。理解が進めば、標準偏差と組み合わせて顧客分析などの業務において有効な手段になると考えています。 分析に挑戦するには? まずは、苦手意識のある分析手法や未経験の手法に挑戦し、自分自身で試してみることが理解への早道だと思います。職業柄、大規模なデータに触れることもあるため、今回学んだ知識を実務にうまく活かしていきたいと考えています。

データ・アナリティクス入門

ビジュアルで味わう分析の面白さ

平均の意味は? 複数の平均(単純、加重、幾何)をビジュアルで理解できたのは大変参考になりました。計算自体は表計算ソフトを使用すれば難しくないものの、イメージをしっかりと思い出し、目的に合わせて正しく使用することが大切だと感じます。また、今まで漠然としか捉えていなかった標準偏差も、今後、平均とデータのばらつき具合を説明する際に大いに活用できると考えています。 分析方法はどう? 膨大な顧客情報や生産実績の分析においては、単純平均や幾何平均を用いた有用な分析方法があると実感しました。売れ行き製品の傾向をグラフで表現する際、散布図の利用も面白い発見です。これまで棒グラフによる比較が中心でしたが、何をアピールしたいのかを一歩深く考え、見せ方を工夫する必要性を感じさせられました。 データ活用はどう? 所属する営業グループ内でも、データ集計方法や見せ方に関して工夫が求められています。これまで、従来のやり方を盲目的に踏襲するか、各自の感覚に頼る方法に偏っていたため、私がリーダーとして理論に基づいたデータ抽出とグラフ選択を整理し、より効果的な活用方法を提示していきたいと思います。

データ・アナリティクス入門

比較で解き明かす分析の魅力

分析の苦手意識はどう変わった? 分析は比較なり、という言葉をきっかけに、これまで抱いていた「分析」という言葉への苦手意識が和らぎました。分析を「要素に分解し、比較する」とシンプルに捉え直すことで、データ分析の目的や方法を改めて見直す機会となりました。また、比較する際には、常に同じ条件である「Apple to Apple」を心がけることが重要であると理解できました。 継続率向上の秘訣は? 分析の目的を明確に定めた上でデータを取り扱い、最終的には意思決定に結びつけることが目標です。特に、サービスの継続率向上に向け、何があればサービスが続けやすいか、または辞めてしまうかという点から、顧客ニーズをより深く分析していきたいと考えています。 資料の真意は何? これまで、分析担当者が作成した資料をそのまま受け取るだけでしたが、今後は「何の目的で、どの要素を比較しているのか」を意識して資料を読み解くよう努めます。さらに、顧客のサービス継続率や利用・活用率といった数値を日々確認し、昨年比の大まかな変動だけでなく、そこから導き出せる具体的な示唆についても考察を深めていくつもりです。

データ・アナリティクス入門

データ分析で広がる新しい可能性

仮説とグラフ、どう選ぶ? ライブ授業での演習を通じて、仮説を立てることや知りたいことを明確化する手法を学びました。これは、何と何を比較するデータを集めるべきか、そしてどのグラフを用いて視覚化するかを具体的に知ることに役立ちました。それぞれのグラフには特性があり、自分が伝えたいことに適したグラフを選択できるようになったと感じています。 試験結果はどう活かす? 勤務校では、各時期に行われる実力テストの結果をもとにヒストグラムを作成し、成績の分布を視覚化したいと考えています。これにより、各得点帯の生徒数の変化を確認し、生徒の学習がどの程度定着しているかを把握することができます。また、入学後に行ったアンケート結果を分析し、入学の決め手になった要因をデータやグラフでまとめ、今後の募集活動や広報活動に活かしたいと思っています。 クラス分析をどう実施? まずは、自分の担当クラスを対象に分析を行い、具体的なデータの種類や収集方法、仮説に基づくグラフ作成など、提案方法を試行錯誤してみます。そして、その結果を関係部署に提案し、学校全体の分析へとつなげていきたいと考えています。

データ・アナリティクス入門

データで意思決定を変える!ビジネス革命の鍵

意思決定プロセスを学ぶ意義とは? この講座を受講して、経営における意思決定のプロセスについて深く理解することができました。特に、現実のビジネスシーンをシミュレートしながら戦略を立てることで、理論だけでなく実務への応用が見えてきました。 データ分析の重要性をどう感じた? 最も印象に残ったのは、データ分析の重要性についての講義でした。これまでは直感や経験に頼っていた部分が多かったのですが、客観的なデータを基に判断することで、より確実な結果が得られることを実感しました。また、データの選定や分析方法についても具体的な手法が紹介され、すぐにでも実践に生かせる内容でした。 グループディスカッションの収穫は? さらに、グループディスカッションを通じて、他の受講生との意見交換や視点の違いを知ることができたのも大きな収穫です。同じテーマでも異なる業界や職種の視点を知ることで、新たな発見や気付きがありました。 講座をどれだけ活用できるか? 全体として、非常に実践的で充実した内容の講座でした。今後もこの知識を活用して、より論理的かつ効率的に業務に取り組んでいきたいと思います。

データ・アナリティクス入門

現状分析で課題解決のアイデア発見!

データの見える化で何が得られる? 常にデータを見える化することで、問題解決のアイディアが生まれやすくなると感じました。例えば、業績の課題に対して財務諸表を見て問題点を見つけたり、ロジックツリーを書いて選択肢を並べてみることは効果的だと思います。 損益以外の問題も解ける? 私は業績管理の部署にいますが、損益に問題があればその問題点の把握の仕方はある程度定型化されてできるのではないかと思っています。しかし、損益以外の業務における問題の把握や発見は難しく、挑戦してみたいと考えています。 まず、あるべき姿の候補をいくつか出し、それに対してギャップがある部分を洗い出します。そして、その要因となるものをロジックツリーにして書き出します。 ギャップをどう埋める? あるべき姿の列挙として、他の事業やプロジェクトから現在の部署に足りていない問題を見つけてみます。次に、ロジックツリーを使って現状とのギャップを可視化し、見えていない部分を明確にします。最後に、定量化を行い、どの項目についてギャップが大きいのか、どの項目に取り組むとあるべき姿に達成しやすいのかを整理します。

データ・アナリティクス入門

データで解く! 成果を上げる実践術

理解を深めるためには? 自分が「なんとなく分かっていた」と思っていたことも、改めて問われると言葉に詰まってしまうことがあります。それは実際には十分に理解できていなかったからかもしれません。分析を行う際には、各要素を比較し、言語化することを意識する必要があります。普段の研修では聞き手に回ることが多かったため、アウトプットするのは不得手でしたが、この学習を通じてしっかりと身につけたいと思います。 データ活用の戦略は? 業務実績データから得られる課題抽出や傾向の把握、戦略立案などに活用したいと考えています。特に、各支社・拠点におけるデータを活用し、問題解決に結びつけていきたいです。また、意思決定の過程では、常に数字に基づいて話すことを徹底し、業務で成果を上げていくことを目指します。 効果的な比較分析法は? データ分析においては、比較分析を徹底する必要があります。それに伴い、できる限り多くのデータを集めることが理想ですが、労力も相当なものになるでしょう。無駄な作業にならないよう、目的やアウトプットイメージ、期限、制約をしっかりと言語化し、伝えることが重要です。

データ・アナリティクス入門

データ分析の方法で成果が変わる理由

データ分析の仮説作りとは? 仮説を立てたうえでデータを収集し分析しなければ、分析結果を施策につなげることはできません。3C分析や4Pの視点を取り入れることで、仮説の軸を整え、仮説の幅を広げることが可能です。仮説をもとにどのデータを分析するかを検討しますが、データは「すでにあるもの」と「新たに取得するもの」に大別されます。 アクセスデータをどう活用する? 例えば、WEBのアクセスデータなどは、以前はあまり意識することなく仮説に基づいてデータを考慮するという手順で分析していました。しかし、分析に重きを置きすぎると、仮説の軸や幅について十分に考えることができません。まずは仮説を立てることに重点を置いて分析を進めたいと思います。 思考の幅を広げるには? アクセスデータを見る際には、仮説を検証する意識で分析を進めます。SNSやWEB広告の各指標も多くが既に用意されているため、つい既存のデータだけで考えがちですが、その結果として「良かった」「悪かった」という結論に終わりがちです。施策を行う前に仮説を立て、その仮説に対する結果という視点で分析・報告を行いたいと思います。

クリティカルシンキング入門

立ち止まり、疑問を力に変える

どう深堀りすべき? 分解のプロセスでは、目に見える事実だけに当てはまらず、常に疑問を持って深堀りすることが、課題の本質を把握する上で非常に重要であると理解しました。実際の業務ではスピードが求められるため、予想通りのデータが出ると次のステップへと急ぎがちですが、一度立ち止まって、より深く検証する姿勢を大切にしていきたいと思います。 真実をどう捉える? また、品質不具合や設備のトラブルにおける再発防止の取り組みにこの分析を活用しています。結論ありきの報告が多く、グラフの見方などを深く疑っていなかった点に気付きました。今後は、別の切り口から事象を捉えることで、これまで見過ごしていた現実を明らかにできないかという問いを持つように努めたいと考えています。 原因究明の本質は? 過去の経験から、品質不具合や設備トラブルの原因を掘り下げることで、根本原因が共通しているケースが多いと感じています。特に、ある地域では、事象の特定は得意である一方、原因究明が軽視されがちな傾向があるため、日々の業務の中でさらに踏み込んだ分析を実践し、原因究明の体質を根付かせたいと再認識しました。

「分析 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right